Three-point bending mechanical properties of the bone in a rat model of osteoporosis after treatment with four kinds of drugs
10.3969/j.issn.2095-4344.2015.46.012
- VernacularTitle:4种药物干预治疗骨质疏松模型大鼠骨三点弯曲力学特性的对比分析
- Author:
Qi YANG
;
Chuangang PENG
;
Ye WANG
;
Qiang WANG
- Publication Type:Journal Article
- From:
Chinese Journal of Tissue Engineering Research
2015;(46):7440-7444
- CountryChina
- Language:Chinese
-
Abstract:
BACKGROUND:Mechanical property test is an important method for assessing the therapeutic effect of drug therapy in osteoporosis animal models. But there are rare reports on the three-point bending mechanical test for evaluating the therapeutic effects of a variety of drugs on a female rat model of senile osteoporosis. OBJECTIVE: To explore the interventional effects ofDanqi particles, premarin, ipriflavone and αD3 in a rat model of osteoporosis through the three-point bending mechanical test. METHODS:Forty-eight female Wistar rats were randomized into six groups, and animal models of senile osteoporosis were made in al rats except for those in the normal control group. Then, the rats were givenDanqi particles (0.9g/kg/d), ipriflavone (1 mg/kg/d), αD3 (0.1 mg/ka/d) and premarin (0.3 mg/kg/d) in theDanqi, ipriflavone, αD3 and premarin groups, respectively. An electronic universal testing machine was used to perform the three-point bending mechanical test on the bilateral tibiae of rats. RESULTS AND CONCLUSION: Compared with the model group, the maximum load, maximum stress, maximum bending moment, maximum stress, elastic modulus of the tibia were significantly higher in theDanqi, ipriflavone and premarin intervention groups (P < 0.05). There were no significant differences in the maximum load, maximum stress, maximum strain and modulus of elasticity between αD3 and model groups (P > 0.05). There were also no significant differences in the maximum load, maximum stress and maximum strain between the Danqi and normal control groups (P> 0.05). These findings indicate thatDanqi, ipriflavone and premarin interventions have good achievements in the three-point bending mechanical test, and theDanqi particles have the best intervention effects. αD3 has no obvious effects on the three-point bending mechanical performance.