Synthesis of acid-sensitive doxorubicin prodrug nanoparticle and its application in brain glioma treatment
10.11958/20150109
- VernacularTitle:酸敏感阿霉素前药纳米粒的合成及其在治疗脑胶质瘤中的作用
- Author:
Jinjian LIU
;
Yumin ZHANG
;
Cuihong YANG
;
Liping CHU
;
Fan HUANG
;
Honglin GAO
;
Jianfeng LIU
- Publication Type:Journal Article
- Keywords:
blood-brain barrier;
doxorubicin prodrug;
nanoparticle;
brain glioma;
acid-sensitive
- From:
Tianjin Medical Journal
2016;44(1):33-37
- CountryChina
- Language:Chinese
-
Abstract:
Objective To synthesize a new kind of acid-sensitive doxorubicin prodrug nanoparticles and to evaluate its anti-brain glioma effect and efficiency through blood-brain barrier (BBB). Methods The prodrug acid-sensitive poly-ethylene glycol (PEG)-doxorubicin (PEG-DOX) copolymer was synthesized by Schiff base reaction, and PEG-DOX pro-drug nanoparticles (PEG-DOX NPs) were prepared by self-assembling. The character of PEG-DOX copolymer was detected by dynamic light scattering (DLS) instrument and 1H NMR. The morphology of PEG-DOX NPs was observed by transmission electron microscopy (TEM). The character of drug release was detected by UV mothed. The cellular uptake efficiency of glio-ma cells to PEG-DOX NPs was observed by inverted fluorescence microscope. The anti-brain glioma effects of PEG-DOX NPs and Free DOX were studied by MTT mothed. PS80-PEG-DOX NPs were gained by the modification of PEG-DOX NPs with Tween 80. Nine BALB/c mice were separated into Free DOX, PEG-DOX NPs and PS80-PEG-DOX NPs groups by ran-dom drawing lots. The mean fluorescence intensity of brain and main organs were observed by in vivo imaging system. Re-sults The copolymer of PEG-DOX can self-assemble into nanoparticles with the diameter of 100 nm. PEG-DOX NPs can quickly release DOX in acid environment. Although PEG-DOX NPs had slow cancer cell uptake than Free DOX, it had lon-ger accumulation. MTT results showed that PEG-DOX NPs had concentration dependent anti-brain glioma effect. Indepen-dent samples t-test indicated that the efficiency through BBB was significantly higher in PS80-PEG-DOX NPs group than that of Free DOX group and PEG-DOX NPs group. Conclusion PEG-DOX NPs show well anti-brain glioma effect in vi-tro, and can across BBB with high efficiency after modification, which make it possible for a potential therapeutic prodrug for brain glioma.