Preparation and performance of three kinds of thermoresponsive acellular carriers
10.3969/j.issn.2095-4344.2015.43.022
- VernacularTitle:三种温控脱细胞载体的制备与性能评估
- Author:
Shuaixing AN
;
Meili YU
;
Hongyue GUO
;
Tan LI
;
Yang LI
- Publication Type:Journal Article
- From:
Chinese Journal of Tissue Engineering Research
2015;(43):7004-7009
- CountryChina
- Language:Chinese
-
Abstract:
BACKGROUND:To design and fabricate a novel three-dimensional thermoresponsive polymer cel scaffold is one of the hot topics in the research of polymer science. OBJECTIVE: To prepare three different kinds of thermoresponsive acelular carriers and to evaluate their performance. METHODS:The copolymer N-isopropylacrylamide temperature acelular scaffold, macroporous copolymer N-isopropylacrylamide temperature acelular scaffold and macroporous copolymer N-isopropylacrylamide crosslinking aldehyde sodium alginate thermoresponsive acelular scaffold were prepared. The specific surface area, thermoresponsive performance, porosity, pore size and biocompatibility of these three groups of scaffolds were determined. RESULTS AND CONCLUSION: The specific surface area of copolymer N-isopropylacrylamide thermoresponsive acelular scaffold, macroporous copolymer N-isopropylacrylamide thermoresponsive acelular scaffold and macroporous copolymer N-isopropylacrylamide crosslinking aldehyde sodium alginate thermoresponsive celular scaffold was respectively 135, 386, 421 m2/g. The lower critical solution temperature was 30, 28.5, 29.5℃. The cel toxicity reaction was respectively grade 2, 2, 1. These indicators showed that the three kinds of scaffolds were provided with a temperature-sensitive characteristics and similar lower critical solution temperature. The biocompatibility of macroporous copolymer N-isopropylacrylamide crosslinking aldehyde sodium alginate thermoresponsive acelular scaffold was significantly better than the other two scaffolds. The porosity and pore size of macroporous copolymer N-isopropylacrylamide thermoresponsive acelular scaffold and macroporous copolymer N-isopropylacrylamide crosslinking aldehyde sodium alginate thermoresponsive acelular scaffold were greater than those of the copolymer N-isopropylacrylamide thermoresponsive acelular scaffold (P < 0.05). These results demonstrate that macroporous copolymer N-isopropylacrylamide thermoresponsive acelular scaffold and macroporous copolymer N-isopropylacrylamide crosslinking aldehyde sodium alginate thermoresponsive acelular scaffold have more obvious pore structure.