Effects of bone marrow mesenchymal stem cell conditioned medium with and without inflammatory activation on radiation-induced intestinal injury
10.3969/j.issn.2095-4344.2015.10.013
- VernacularTitle:炎症预激活骨髓间充质干细胞条件培养基修复小肠黏膜急性辐射损伤
- Author:
Wanwei LIU
;
Yun CHEN
;
Yue ZHENG
;
Weihong SHA
;
Qiyi WANG
;
Shanliang YE
;
Hao CHEN
- Publication Type:Journal Article
- Keywords:
Bone Marrow;
Mesenchymal Stem Cel Transplantation;
Culture Media,Conditioned;
Radiation Injuries;
Intestine,Smal
- From:
Chinese Journal of Tissue Engineering Research
2015;(10):1544-1550
- CountryChina
- Language:Chinese
-
Abstract:
BACKGROUND:Conditioned medium from mesenchymal stem cels (MSC-CM) may represent a promising alternative to MSCs transplantation. Previous studies have shown that inflammatory activation can strengthen the multiple biological potencies of MSCs; however, normal MSCs with insufficiency of immunocompetence and migration ability are not effective for tissue damage repair. OBJECTIVE:To investigate differential effects of MSC-CM with and without inflammatory activation on radiation-induced intestinal injury.METHODS:MSCs from the bone marrow of SD rats were separated, cultured and identified, and then co-cultured with non-irradiated IEC-6 or irradiated IEC-6 in a transwel system for 24 hours. Then, MSCs with inflammatory activation were cultured alone for another 48 hours. After that, the supernatant was colected as non-activated MSC-CM (MSC-CMNOR) and MSC-CM under radiation-induced inflammatory condition (MSC-CMIR). Rats were exposed to 14 Gy whole abdominal irradiation and randomly divided into four groups: control group, radiation injury group (DMEM/F12), MSC-CMNOR group and MSC-CMIR group. Continuous administration was givenvia tail vein and intraperitoneal implantation of Alzet microosmotic pumps. Intestinal samples were colected at 1, 3, 7 days after radiation for analysis of short circuit variation, at 3 days after radiation for analysis of intestinal epithelium ultrastructure, and at 1, 3, 5, 7, 14 days after radiation for histological observation of the intestinal epithelium using hematoxylin-eosin staining. Blood samples were colected at 1, 3, 7 days after radiation for analysis of serum xylose levels. In addition, the survival state and survival time of rats were observed and recorded. RESULTS AND CONCLUSION: The short circuit variation responding to electrical field stimulation was significantly reduced at al frequencies, but it was significantly improved in the MSC-CMIR group. Similarly, the intestinal absorption (serum xylose levels) was also significantly impaired by irradiation, but improved by delivery of MSC-CMIR (P < 0.05). At 3 days after MSC-CMIR infusion, the intestinal epithelium exhibited an increase in crypt size and vilous length (P < 0.05). Under the electron microscope, a reduction in intestinal microvili and open tight junctions in irradiated intestinal epithelium was found, and the intestine from rats treated with MSC-CMIR had more obvious tight junctions. In addition, treatment with MSC-CMIR dramaticaly improved the survival rate and mean survival time of irradiated rats as compared to those treated with DMEM/F12 or MSC-CMNOR (P < 0.05). Taken together, the present study demonstrated that MSC-CMIR , but not non-activated MSC-CM, improves the structural and functional restoration of the smal intestine after radiation-induced intestinal injury.