Transplacental transport mechanisms of drugs for transplacental treatment of fetal tachyarrhythmia of MDCKII/MDCKII-BCRP cell line.
- Author:
Wei WANG
;
Jiajia ZHAO
;
Ting WANG
;
Ling WANG
;
Xuehua JIANG
- Publication Type:Journal Article
- From:
Acta Pharmaceutica Sinica
2015;50(3):305-11
- CountryChina
- Language:Chinese
-
Abstract:
To study the transport mechanisms of drugs for transplacental treatment of fetal tachyarrhythmia, MDCKII-BCRP and MDCKII cell models was used. MDCKII-BCRP and MDCKII cell monolayer model was used to investigate the bi-direction transport of sotalol, propranolol, propafenone, procainamide and flecainide. Drug concentrations were measured by HPLC-UV or chemiluminescence. The apparent permeability coefficient (P(app)), efflux rate (R(E)) and net efflux rate (R(net)) were calculated. Drugs with R(net) greater than 1.5 were further investigated using cellular accumulation experiments with or without a BCRP inhibitor. The R(net) of sotalol, propranolol, propafenone and procainamide were less than 1.5, while R(net) of flecainide with concentrations of 20 and 5 μmol x L(-1) were 1.6 and 1.9, respectively. The results showed that the transport of flecainide on MDCKII-BCRP cell monolayer could be mediated by BCRP; and the affinity increased when the concentration of flecainide decreased. Cellular accumulation experiments further suggested that accumulation of flecainide in MDCKII-BCRP cells was significantly lower than that in MDCKII cells in a concentration-dependent manner. BCRP inhibitor quercetin (50 μmol x L(-1)) significantly increased the accumulation of flecainide in MDCKII-BCRP cells (P < 0.05). Our preliminary data showed that flecainide but not sotalol, propranolol, propafenone or procainamide can be a substrate of BCRP. Thus the effect of flecainide may be affected by the BCRP in the maternal placental trophoblast membrane layer when treating fetal tachyarrhythmia.