Identification of Salvia shandongensis new species based on sequences of the plastid psbA-trnH intergenic region.
- Author:
Xiaojuan LI
;
Jianping HAN
;
Jianxiu LI
;
Xiaochen CHEN
;
Longfei ZHANG
;
Jia LI
;
Zhengwei GU
;
Yongqing ZHANG
- Publication Type:Journal Article
- From:
Acta Pharmaceutica Sinica
2013;48(8):1338-44
- CountryChina
- Language:Chinese
-
Abstract:
To identify Salvia shandongensis and its relatives at molecular level, the psbA-trnH intergenic region of three species including Salvia shandongensis, Salvia miltiorrhiza and S. miltiorrhiza f. alba were amplified and sequenced. Sequences were assembled with CodonCode Aligner. The K2P genetic distances between Salvia shandongensis and its relatives were calculated and UPGMA tree was performed by MEGA5.0. The results indicated that the lengths of psbA-trnH regions of Salvia shandongensis were about 391 bp, while the lengths of psbA-trnH regions of Salvia miltiorrhiza and S. miltiorrhiza f. alba were about 386 bp. The psbA-trnH sequences showed considerable variations between species and thus were revealed as a promising candidate for barcoding of Salvia shandongensis and its relatives. The intra-specific genetic distances of Salvia shandongensis were 0, while the intra-specific genetic distances of Salvia miltiorrhiza and S. miltiorrhiza f. alba were 0.002 and 0.001 respectively. Additionally, the genetic distance of Salvia shandongensis and Salvia miltiorrhiza ranged from 0.034 to 0.04, and the genetic distance of Salvia shandongensis and S. miltiorrhiza f. alba ranged from 0.005 to 0.008, the intra-specific genetic distances of Salvia shandongensis were much smaller than that of Salvia miltiorrhiza and S. miltiorrhiza f. alba; clustering results showed that there were obvious differences between Salvia shandongensis, Salvia miltiorrhiza and S. miltiorrhiza f. alba, which was consistent with morphological characteristics. This study not only firstly provides the scientific basis for establishing the taxonomy position in molecular level and revealing their genetic relationships of S. shandongensis, S. miltiorrhiza and S. miltiorrhiza f. alba; but also provides DNA molecular identification scientific basis for the development of new medicinal plant resources of Salvia shandongensis. Our results suggest that the psbA-trnH intergenic spacer region can be used as a barcoding to identify Salvia shandongensis, Salvia miltiorrhiza and S. miltiorrhiza f. alba.