Cytological effect of tissue engineering materials with cell compatibility
- VernacularTitle:细胞相容性组织工程材料的细胞效应
- Author:
Baolin CHEN
;
Dongan WANG
;
Linxian FENG
- Publication Type:Journal Article
- From:
Chinese Journal of Tissue Engineering Research
2006;10(45):225-227
- CountryChina
- Language:Chinese
-
Abstract:
OBJECTIVE: Based on the mechanism of cellular adhesive growth and the developing course of cell compatibility materials, the cytological effects of tissue engineering materials of various polymers and surface topographies are reviewed. And presume theoretically that the materials of porous structure are better than smooth materials in surface, and biodegradation materials can explain the biocompatibility.DATA SOURCES: An online search was conducted in PUBMEDdatabase to identify the related articles published from December 1997 to December 2003 with the key words of "tissue engineering, tissue engineering materials, cell-compatibility, cell compatibility materials, procession anchorage", and the language was limited to English. Meanwhile, the related Chinese articles were retrieved in Wanfang database published at the same period by inputting the key words of "tissue engineering, tissue engineering materials, cell-compatibility, cell compatibility materials,mechanism of adhesive growth" into computer.STUDY SELECTION: All the data were checked primarily, and the quotations of each article were looked up. Inclusive criterion: content related to the cell-compatibility of tissue engineering materials. Exclusion criterion:repeated study or Meta-analysis.DATA EXTRACTION: Totally 41 articles were collected, and 28 ones were deleted due to the repeated or dated contents. Among the 13 articles met the inclusive criterion, 2 ones were about the mechanism of cellular adhesive growth and 11 ones were referred to the cell compatibility materials.DATA SYNTHESIS: ①The mechanism of cellular adhesive growth: To summarize the characteristics of adhesive growth in various in vitro cultured cells, and briefly describe the growth procedure of those cells cultured on substrate materials. Suggesting that compensate for the adverse effects caused by pore space structure, more effective methods should be adopted to form the transition layer of cell compatibility when the cells are required to grow.②Cell compatibility materials: To summarize the cytological effect produced by the materials of various polymers and surface topographies, and point out that the interaction mechanism between cells and materials of different surface topographies is still a difficult but valuable topic in the related fields. The physical and chemical properties as well as topological structure of the materials surface influence on the cell compati bility of materials. The interaction between cells andpolymers is the evalu ation indicator of cell compatibility of materials. The temporary interaction can be evaluated by the adhesion of cells to polymers surface, while the long-term interaction may be estimated by the growth of in vitro cultured cells or in vivo implanted polymers.CONCLUSION: Theoretically, porous materials show great superiority compared with smooth surface materials; Biodegradation materials can tackle the biocompatibility completely.