Effects of transplantation of neural stem cells modified with glial cell line-derived neurotrophic factor gene on Caspase-3 expression in rats with transient cerebral ischemia/reperfusion injury
10.3969/j.issn.1673-8225.2009.49.014
- VernacularTitle:胶质细胞源性神经营养因子基因修饰神经干细胞移植短暂性脑缺血再灌注损伤大鼠半胱氨酸天冬氨酸蛋白酶3的表达
- Author:
Xiongbin XIAN
;
Xiaoqing GAO
;
Chaoxian YANG
;
Qionglan YUAN
- Publication Type:Journal Article
- From:
Chinese Journal of Tissue Engineering Research
2009;13(49):9677-9680
- CountryChina
- Language:Chinese
-
Abstract:
BACKGROUND: There is few studies addressing the long-playing dynamic observation of cysteinyl aspartate specific protease 3 (Caspase-3) expression following cerebral ischemia/reperfusion.OBJECTIVE: To investigate the effect of transplantation of the neural stem cells (NSCs) modified with gene of glial cell line-derived neurotrophic factor (GDNF) on expression of Caspase-3 in adult Sprague Dawley rats with transient cerebral ischemia.DESING: Randomized controlled animal study.MATERIALS: Sixty Sprague Dawley rats were divided randomly into normal control group (N, n =5), ischemia/reperfusion group (IR, n=5), neural stem cell group (NSCs, n=25) and NSCs modified with gene of GDNF group (GDNF/NSCs, n =25). Several clean neonatal Sprague-Dawley rats were selected to harvest NSCs.METHODS: With the exception of normal control group, models of transient cerebral ischemia were created by modified suture method in other groups. At day 3 following reperfusion, 20 μL NSC suspension containing (4.0-5.0)×10~5 NSCs was infused into rats of the NSC group via right lateral ventricle. An equal volume of GDNF-modified NSC suspension was injected into rats of the GDNF/NSC group. 20 μL saline was infused into the rats of the ischemia/reperfusion group. Animals were anesthetized and sacrificed at week 1 following ischemia/reperfusion in the normal control and ischemia/reperfusion groups. Animals were anesthetized and sacrificed at weeks 1, 2, 3, 5, 7 following ischemia/reperfusion in the NSC and GDNF/NSC groups, 5 rats in each time point.MAIN OUTCOME MEASURES: The strept avidin-biotin immunostaining method was used to observe the distributive characteristics of Caspase-3 in the hippocampus and frontal parietal cortex.RESULTS: Immunohistochemical method (SP) showed that positive capase-3 products expressed in nucleus, cytoplasm and partial neurite. In hippocampus, number of Caspase-3-positive cells was decreased in NSC and GDNF/NSC groups. With the exception of at 1-week reperfusion, number of Caspase-3-positive cells was significantly lessened in the GDNF/NSC group compared with the NSC group at other time points (P < 0.05). In frontoparietal cortex, number of Caspase-3-positive cells was reduced in the NSC and GDNF/NSC groups over time. Except 1 and 2 weeks following ischemia/reperfusion, number of Caspase-3-positive cells was significantly lessened in the GDNF/NSC group compared with the NSC group (P < 0.05).CONCLUSION: Transplanting NSCs modified with gene of GDNF can improve remarkably neural function by deceasing Caspase-3 expression and reducing the nervous cell apoptosis. The transplantation of NSCs modified with gene of GDNF obtained better outcomes compared with NSC transplantation.