Acellular porcine aorta matrix as a novel tissue engineered vascular scaffold
10.3969/j.issn.1673-8225.2010.47.044
- VernacularTitle:应用猪主动脉脱细胞基质制备新型组织工程血管支架:生物相容性及力学性能评价
- Author:
Yuming Lü
;
Huamei HUANG
;
Qiuling WANG
;
Deming XIE
- Publication Type:Journal Article
- From:
Chinese Journal of Tissue Engineering Research
2010;14(47):8921-8926
- CountryChina
- Language:Chinese
-
Abstract:
BACKGROUND: The key of tissue engineered blood vessel research depends on the appropriate scaffolds. The porcine vascular tubes have frequently been used as candidates for tissue engineering vessel construction, but high immunogenicity and poor mechanical strength limit its application for tissue engineering scaffolds.OBJECTIVE: To prepare a novel tissue engineered vascular scaffold with good mechanical properties and biocompatibility using acellular porcine aorta matrix.METHODS: Porcine aorta was decellularized and modified by thermal cross-linking to improve the mechanical strength and biodegradation properties and to prepare acellular porcine aorta matrix scaffolds. Hematoxylin-eosin staining of histological sections and biomechanical tests were performed to assess the decellularization effects and the mechanical strength of the vascular matrix respectively. Vascular endothelial cells from human umbilical cord veins were isolated and seeded on the acellular matrix scaffolds and cultured in vitro. The biocompatibility was evaluated. RESULTS AND CONCLUSION: After the porcine aorta was treated by 1% Triton X-100 solution for 84 hours, the vessel was fully decellularized, and the architecture of matrix was well preserved. The acellular vascular matrix demonstrated improved biomechanical properties after modification by thermal cross-linking under vacuum at 120 °C for 12 hours. Its tensile strength reached 1.70 MPa. After 7 days of in vitro culture, the seeded endothelial cells formed a typical vascular endothelial layer structure on the surface of acellular matrix, as observed by scanning electron microscopy. Results proved that acellular vascular matrix of porcine aorta could maintain the morphology and structure of natural vessels, its mechanical strength could be greatly improved after successive freeze-drying and thermal cross-linking. A good compatibility between the acellular matrix and endothelial cells of umbilical vein is also achieved.