Prevention and treatment of acute graft-versus-host disease in mice by bortezomib
10.3760/cma.j.issn.0254-1785.2011.01.004
- VernacularTitle:硼替佐米对小鼠急性移植物抗宿主病的抑制作用
- Author:
Haiying SUN
;
Huayun GENG
;
Lingyu ZENG
;
Zhenyu LI
;
Kailin XU
- Publication Type:Journal Article
- Keywords:
Bortezomib;
Graft versus host disease;
NF-κB;
Mice
- From:
Chinese Journal of Organ Transplantation
2011;32(1):11-15
- CountryChina
- Language:Chinese
-
Abstract:
Objective To observe the effect of bortezomib on acute graft-versus-host disease (aGVHD) in an aGVHD model of mice and investigate the related mechanism. Methods Male C57BL/6( H-2Kb)mice were used as donors and female Balb/c (H-2Kd) mice used as recipients. Balb/c mice received total body irradiation (TBI) by 7.0 Gy X-radiation, and randomly divided into five groups. normal (group A), TBI (group B), TBI + bortezomib (group C), TBI + bone marrow cells (BMC) + spleen cells (SC) (group D) and TBI + bortezomib + BMC + SC (group E). The physical signs and the pathological damage of aGVHD, mean survival time, and chimerism were observed in recipients. The NF-κB p65 levels in nuclei of the liver and small intestine tissues of groups A,B and C were analyzed by Western blot. Results ( 1 ) The clinical aGVHD score in group D was (7.37±0. 32), significantly higher than in group E (5.85 ± 0.40) (P<0. 05). Histopathology of the gut, liver and skin illuminated that the Ⅲ-Ⅳ degree GVHD occurred in group D. The occurrence of aGVHD in group E was later than in group D. The symptoms and the pathological damage of aGVHD in group E were milder than in group D. The average survival time in group E was significantly longer than that in group D (P<0.05). The percentage of donor-derived cells in recipient mice was above 90% at day 12 after transplantation; (2) NF-κB p65 levels in nuclei of the liver and small intestine tissues in group B was significantly higher than in group C on the day 1,3 and 5 (P<0. 05). Conclusion Bortezomib can inhibit the activation and expression of NF-κB,which may be the underlying mechanism for it to relieve aGVHD.