- Author:
Lei YUAN
1
;
Zhen-Yang GU
1
;
Chun-Ji GAO
2
Author Information
- Publication Type:Journal Article
- MeSH: Cell Line, Tumor; Humans; Imidazoles; pharmacology; Multiple Myeloma; genetics; metabolism; Piperazines; pharmacology; Tumor Suppressor Protein p53; genetics; metabolism; ran GTP-Binding Protein; genetics; metabolism
- From: Journal of Experimental Hematology 2016;24(3):760-764
- CountryChina
- Language:Chinese
-
Abstract:
OBJECTIVETo investigate the role of p53 on ran transcription in myeloma cells.
METHODSUsing real-time fluorescence quantitative PCR, the ran transcription level was measured in 8 human myeloma cell lines such as OPM-2, RPMI-8226, U-266, KAS6/1, ANML-6, H-929, MM1.S and MOLP-8. The ran transcription level and P53 expression were detected by Q-PCR in MM1.S treated with Nutlin-3a for 24, 48 and 72 hours, respectively. The Western blot was used to detect the expression levels of ran and P53 proteins, and ran expression level after transfection of MM1.S cells using different concentration of plasmids which express the P53 luciferase reporter.
RESULTSH-929 and MM1.S cells showed the highest ran transcription level among the above-mentioned 8 cell lines (P<0.05). After treatment with Nutlin-3a, ran transcription level in MM1.S cells decreased (P<0.05), (r=-1.00, P=0.04) and P53 expression increased (r=1.00, P=0.06) in time-dependence manner. The detection by p53 luciferase reporter showed that the ran transcription decreased and the plasmid increased to 25 ng (P<0.05).
CONCLUSIONThis study demonstrated that ran is a target gene regulated by P53 in myeloma cells for the first time.