The inhibition of tamoxifen on sodium channel in SHG-44 glioma cell-line.
- Author:
Shuai WANG
1
;
Bao-hua JIAO
Author Information
- Publication Type:Journal Article
- MeSH: Antineoplastic Agents, Hormonal; pharmacology; Brain Neoplasms; pathology; Cell Line, Tumor; Cell Proliferation; drug effects; Glioma; pathology; Humans; Patch-Clamp Techniques; Sodium Channel Blockers; pharmacology; Tamoxifen; pharmacology
- From: Chinese Journal of Applied Physiology 2009;25(2):207-210
- CountryChina
- Language:Chinese
-
Abstract:
AIMTo explore the effect of tamoxifen on voltage-dependent sodium channels in SHG-44 glioma cell line.
METHODSWhole-cell patch clamp technique was used to record the Na currents in SHG-44 cell line and to investigate the effect of tamoxifen of different concentration on this channel currents.
RESULTSThis channel activated and inactivated quickly. Tamoxifen could significantly decrease the amplitude of Na currents of SHG-44 cell line. This block effect was dose dependent and voltage dependent. When the holding potential was 0 mV, 8 micromol/L tamoxifen could block this currents 69%. The half inhibition concentration (IC50) was 5.54 micromol/L.
CONCLUSIONTamoxifen could significantly block the voltage dependent sodium channel in malignant glioma cell line SHG-44. It might be one of the mechanisms that tamoxifen inhibit glioma proliferation. clamp technique was used to record the Na currents in SHG-44 cell line and to investigate the effect of tamoxifen of different concentration on this channel currents.
RESULTSThis channel activated and inactivated quickly. Tamoxifen could significantly decrease the amplitude of Na currents of SHG-44 cell line. This block effect was dose dependent and voltage dependent. When the holding potential was 0 mV, 8 micromol/L tamoxifen could block this currents 69%. The half inhibition concentration (IC50) was 5.54 micromol/L.
CONCLUSIONTamoxifen could signifi-cantly block the voltage dependent sodium channel in malignant glioma cell line SHG-44. It might be one of the mechanisms that tamoxifen inhibit glioma proliferation.