Myocardioprotective effects of the combination of ischemic preconditioning with hypothermia and crystalloid cardioplegia in immature rabbits.
- Author:
Shan-Shan ZHU
1
;
Zhong-Ming ZHANG
;
Yu-Cai ZHANG
;
Peng-Cheng XU
;
Hong-Yan DONG
;
Jian-Wei FAN
;
Yin-Ming ZENG
Author Information
1. Jiangsu Institute of Anesthesiology, Xuzhou Medical College, Department of Anesthesiology, The Third Hospital of Xuzhou City, Xuzhou 221002 China.
- Publication Type:Journal Article
- MeSH:
Animals;
Animals, Newborn;
Cardioplegic Solutions;
pharmacology;
Female;
Hypothermia, Induced;
In Vitro Techniques;
Ischemic Preconditioning, Myocardial;
methods;
Isotonic Solutions;
pharmacology;
Male;
Myocardial Reperfusion Injury;
prevention & control;
Rabbits
- From:
Acta Physiologica Sinica
2004;56(3):389-396
- CountryChina
- Language:English
-
Abstract:
This study was undertaken to explore the myocardioprotective effects of the combination of ischemic preconditioning (IP) with hypothermia and St.II Thomas crystalloid cardioplegic solution (CCS) on immature hearts in the rabbit. Isolated immature rabbit hearts were perfused with Krebs-Henseleit bicarbonate buffer on Langendorff apparatus. In experiment 1, 24 hearts were divided into 4 groups (n=6 in each group): Con, IP1, IP2 and IP3 group. Hearts of the four groups underwent 0, 1, 2 or 3 cycles of IP respectively. Then all the hearts were subjected to a sustained ischemia period of 2 h at 20 degrees C and a postischemic reperfusion period of 30 min at 37 degrees C. In experiment 2, 48 hearts were divided into 6 groups (n=8 in each group): SCon1, SIP1, SCon2, SIP2, SCon3 and SIP3 group, according to hypothermia and the duration of sustained ischemia (30 min at 32 degrees C; 90 min at 25 degrees C, 2 h at 20 degrees C). The SIP1, SIP2 and SIP3 groups were preconditioned twice before the sustained hypothermic ischemia, while the SCon1, SCon2 and SCon3 groups were not preconditioned. CCS was applied during sustained ischemia, all the hearts were reperfused for 30 min at 37 degrees C. Heart rate (HR), left ventricular developed pressure (LVDP) and peak rate of increase or decrease of left ventricular pressure (+/-dp/dt(max)) were recorded. Tissue concentration of adenosine triphosphate (ATP), malondialdehyde (MDA) and the activity of superoxide dismutase (SOD) were measured. At the end of reperfusion, values of product of LVDP and HR, +/-dp/dt(max) in IP2 group were 96%+/-21%, 101%+/-19% and 84% +/-15% of the baseline values respectively, which were significantly higher than those of Con group and IP3 group (P<0.01, P<0.05); also, the ATP content of IP2 group was higher than that of the Con group (P<0.01). When CCS was applied during sustained period of hypothermic ischemia at 32 degrees C or 25 degrees C, recovery rates of RPP (rate product, =LVDPxHR) and +dp/dt(max) in SIP1 group were 87% +/-14% or 99% +/-26% of the baseline values respectively (P<0.05, vs SCon1 group), the values in SIP2 group changed to 87% +/-16% or 102% +/-20% respectively (P<0.05, vs SCon2 group). Contents of ATP in SIP1 and SIP2 groups were significantly higher than those of SCon1 or SCon2 groups respectively (P<0.05), but MDA content of the two groups were significantly lower than those of SCon1 or SCon2 groups (P<0.05) respectively. The study indicates that IP attenuates hypothermic ischemia/reperfusion injury to immature rabbit hearts under 20 degrees C ischemia, two cycles of IP showing better myocardioprotective effects than 1 or 3 cycles of IP. When IP was combined with CCS which were applied during hypothermic ischemia period, the beneficial effects of IP were weakened as the temperature during the hypothermic period was elevated.