Comparison of organic component and di-n-butyl phthalate between human milk and cow milk products.
- Author:
Hui-jie LIU
1
;
Jia CAO
;
Wei-qun SHU
Author Information
- Publication Type:Journal Article
- MeSH: Adult; Animals; Cattle; Dibutyl Phthalate; analysis; Diethylhexyl Phthalate; analysis; Environmental Pollutants; analysis; Female; Humans; Milk; chemistry; Milk, Human; chemistry
- From: Chinese Journal of Preventive Medicine 2011;45(1):53-56
- CountryChina
- Language:Chinese
-
Abstract:
OBJECTIVETo explore types of organic components and pollution level of di-n-butyl phthalate (DBP) between human milk and cow milk products.
METHODSForty healthy postpartum women with an average age of (27.44 ± 3.43) years old were selected, and a 5 ml sample of breast milk were collected. Four different brands of fresh cow milk and 1 brand of milk powder were randomly selected in the market. A total of 15 samples were collected with 3 from each brand, and the qualitative analysis of types of organic components and quantitative analysis of DBP were conducted by gas-chromatography and mass-spectrometry (GC/MS) method.
RESULTSA total of 176 different types of organic components were detected in 40 samples of human milk (averaged at (10.58 ± 4.16) types per sample); 37 different types were detected in 12 samples of fresh cow milk (averaged at (8.67 ± 1.61) types per sample); while 31 types of organic components were detected in 3 samples of milk powder (averaged at (12.67 ± 0.58) types per sample). It was obvious that the types of organic components in milk powder were significantly higher than the other two groups (t = 2.09, 4.00, P < 0.05). The most frequent organic component in human milk and cow milk was 9-octadecenoic acid (45.00% (18/40) in human milk; 53.33% (8/15) in cow milk). DBP concentrations were (57.78 ± 35.42) µg/L, (20.76 ± 6.60) µg/L and (0.45 ± 0.05) mg/kg (equal to (66.78 ± 7.60) µg/L) in human milk, fresh cow milk and milk powder, respectively. The DBP concentration in fresh cow milk was significantly lower than those in human milk and milk powder (t = 37.02, 46.02, P < 0.05).
CONCLUSIONBoth human milk and cow milk contain different types of organic pollutants, some of which have toxic effects on reproduction and human development.