Analysis of antibiotic resistance and genotypes on extended spectrum β-lactamase and AmpC β-lactamase producing strains isolated from Uygur and Han newborns.
- Author:
Wen-li ZHANG
1
;
Jun LIU
;
Jian ZHANG
;
Guang-long SU
Author Information
- Publication Type:Journal Article
- MeSH: Bacterial Proteins; metabolism; China; Escherichia coli; drug effects; genetics; isolation & purification; Escherichia coli Infections; microbiology; Ethnic Groups; Genotype; Humans; Infant, Newborn; Klebsiella Infections; microbiology; Klebsiella pneumoniae; drug effects; genetics; isolation & purification; Microbial Sensitivity Tests; beta-Lactam Resistance; genetics; beta-Lactamases; metabolism
- From: Chinese Journal of Preventive Medicine 2011;45(3):217-224
- CountryChina
- Language:Chinese
-
Abstract:
OBJECTIVEThis study aimed to investigate drug resistance and genotypes of the extended spectrum β-lactamase (ESBLs) and AmpC β-lactamase-producing Escherichia coli and Klebsiella pneumoniae isolated from Uygur and Han newborns in Urumqi.
METHODSDisk diffusion test (Kirby-Bauer) was used for detecting drug resistance of 299 strains to twenty two kinds of antibiotics. Resistance genes of the ESBLs and AmpC β-lactamase-producing strains were amplified by multiplex PCR and subtypes were confirmed by DNA sequence analysis. Total 148 strains were selected with random number table and sequenced, which included TEM-, SHV-, CTX-M-1-, or CTX-M-9-positive ESBLs-producing strains and DHA-, or CIT-positive AmpC β-lactamase-producing strains. Antibiotic resistant rates were analyzed by Whonet 5.4 and statistic analysis was performed by chi-square (χ(2)) test with PEMS 3.1.
RESULTSThe antibiotic resistant rates between Uygur and Han newborns significantly differ in ESBLs-producing Klebsiella pneumoniae to Sulfamethoxazole-Trimethoprim (80.0% (40/50) and 56.0% (28/50), χ(2) = 6.6176, P = 0.0101), in ESBLs-producing Escherichia coli to Sulbactam and Cefoperazone (54.2% (32/59) and 94.0% (47/50), χ(2) = 21.4512, P = 0.0000), and in AmpC β-lactamase-producing Klebsiella pneumoniae to Sulbactam and Cefoperazone (100.0% (20/20) and 72.2% (26/36), χ(2) = 6.7633, P = 0.0093) and to Amikacin (65.0% (13/20) and 25.0% (9/36), χ(2) = 8.6246, P = 0.0033). Although SHV gene of ESBLs-producing Escherichia coli was detected from Uygur newborns at only 3.4% (2/59) and not detectable from Han newborns, TEM, CTX-M-1, and CTX-M-9 group genes were all detected over 38.0% (19/50). Among the detected strains, the subtypes of TEM and CTX-M-1 were mainly TEM-1 and CTX-M-15, respectively; whereas the subtypes of SHV and CTX-M-9 included SHV-1, 2, 11, 12, 27, 61, 99 and CTX-M-9, 14, 24, 27, 65, respectively. The strains of Escherichia coli and Klebsiella pneumoniae carrying two or more kinds of ESBLs genotypes were 56.7% (42/74) - 90.0% (63/70). Two species carrying the AmpC gene in two kinds of newborns were only grouped in the subtypes of DHA-1 and CMY-44, and other subtypes were not detected at all. Moreover, TEM-positive ESBLs-producing Escherichia coli were detected from Uygur newborns at the higher rate than that from Han newborns (71.2% (42/59) and 50.0% (25/50), χ(2) = 5.1291, P = 0.0235), while there was no difference in other genotypes detected between two kinds of newborns (χ(2) < 3.7780, P > 0.05).
CONCLUSIONThere were significant differences in antibiotic resistance and genotype distribution of Klebsiella pneumoniae and Escherichia coli between two nationality newborns, and these two bacteria detected in this study carried multi-resistance genes and showed high resistant to β-lactamase antibiotics.