Cutinase production from short-chain organic acids by Thermobifida fusca.
- Author:
Gangqiang HE
1
;
Guocheng DU
;
Liming LIU
;
He LIU
;
Guanghua HUO
;
Jian CHEN
Author Information
1. Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China.
- Publication Type:Journal Article
- MeSH:
Acetates;
metabolism;
Actinomycetales;
growth & development;
metabolism;
Butyric Acid;
metabolism;
Carboxylic Ester Hydrolases;
biosynthesis;
Fermentation;
Organic Chemicals;
metabolism;
Propionates;
metabolism
- From:
Chinese Journal of Biotechnology
2008;24(5):821-828
- CountryChina
- Language:Chinese
-
Abstract:
We studied cutinase production from short-chain organic acids by Thermobifida fusca WSH03-11 to evaluate the possibility of converting municipal sludge to high value-added products. The optimum organic acid (8.0 g/L) and nitrogen source (1.5 g/L) concentrations were determined by the single factor experiments with butyric acid, propionic acid and acetic acid as the carbon sources. When lactic acid was used as the carbon source, the optimum organic acid (3.0 g/L) and nitrogen source (1.0 g/L) concentrations were obtained. Cutinase production by T. fusca WSH03-11 was further improved with butyric acid (by 31.0%), propionic acid (by 13.3%), acetic acid (by 43.8%) and lactic acid (by 73.2%) as carbon source, respectively, with the optimized cutin concentrations. Among these four short-chain organic acids, the average specific consumption rate of acetic acid was the highest, higher than that of propionic acid 1.3-folds, butyric acid 2.0-folds and lactic acid 2.2-folds. The highest cutinase activity reached 52.4 u/mL with butyric acid (8 g/L) as the sole carbon source, higher than that of lactic acid (3 g/L) 1.7-folds, acetic acid (8 g/L) 2.5-folds and propionic acid (8 g/L) 3.2-folds. The yield of cutinase activity on lactic acid (12.70 u/mg) higher than that of butyric acid 1.4-folds, propionic acid 3.0-folds and acetic acid 3.8-folds. T. fusca WSH03-11 consumed acetic acid firstly in mixed acids carbon sources, and the consumption of butyric acid was inhibited. Further studies indicated that the consumption rate of butyrate was decreased by 66.7% in the presence of 0.5 g/L acetic acid in the mixed acids. This was the first report concerning the production of cutinase by T. fusca with mixed organic acids as the carbon sources. The results presented here provided a novel and efficient approach to produce high value-add products from municipal sludge, and also established a foundation for the industrial production of cutinase by T. fusca WSH03-11 with cheap carbon sources from the processing of municipal sludge.