Neurogenesis of dentate granule cells following kainic acid induced seizures in immature rats.
- Author:
Yan-Ling WANG
1
;
Ruo-Peng SUN
;
Ge-Fei LEI
;
Ji-Wen WANG
;
Shu-Hua GUO
Author Information
- Publication Type:Journal Article
- MeSH: Animals; Cell Differentiation; Cell Proliferation; Dentate Gyrus; cytology; physiopathology; Disease Models, Animal; Excitatory Amino Acid Agonists; adverse effects; Kainic Acid; adverse effects; Mossy Fibers, Hippocampal; physiopathology; Neurogenesis; physiology; Rats; Seizures; chemically induced; physiopathology
- From: Chinese Journal of Pediatrics 2004;42(8):621-624
- CountryChina
- Language:Chinese
-
Abstract:
OBJECTIVEData accumulated over the past years have led to widespread recognition that neurogenesis, the emergence of new neurons, persists in the hippocampal dentate gyrus of the adult mammalian brain, and can be increased by seizures in multiple models. Also, aberrant reorganization of dentate granule cell axons, the mossy fiber sprouting, occurs in human temporal lobe epilepsy and rodent epilepsy models. However a number of studies suggest that the immature brain is less vulnerable to the morphologic alteration of hippocampus after seizures. The goal of this study was to determine whether the seizures can induce dentate granule cell neurogenesis and mossy fiber sprouting in the immature rat.
METHODSSeizures was elicited by unilateral microinfusion of kainic acid (KA, 1 micro g) into the amygdula at postnatal day 15 (P15). Rat pups were given bromodeoxyuridine (BrdU) intraperitoneally on day 5 after KA administration and killed 7 d or 21 d later. The brains were processed for BrdU mitotic labeling combined with double-label immunohistochemistry using neuron-specific, early differentiation marker TuJ1 (betaIII tubulin) or granule-specific marker CaBP (calcium-binding protein calbindin D28k) as well as glia-specific marker GFAP (glial fibrillary acidic protein). Mossy fiber sprouting in intermolecular layer and CA3 subfield was assessed in Timm-stained sections both 1 month and 3 months after KA administration by using a rating scale and density measurement.
RESULTSThe dentate BrdU-immunoreactive cells of the KA-treated rats increased significantly compared with those of control rats on day 7 and 21 after BrdU administration (7 d: 244 +/- 15 vs. 190 +/- 10; 21 d: 218 +/- 19 vs. 133 +/- 12, P < 0.05). Approximately 80.2% and 78.7% of BrdU-labeled cells coexpressed TuJ1 in KA-treated rats and control rats on day 7 after BrdU respectively (P > 0.05). On 21 d after BrdU, 60.2% and 58.2% of dentate BrdU-labeled cells coexpressed GaBP in KA-treated rats and control rats respectively (P > 0.05). GFAP colocalized with 3%-5% dentate BrdU-labeled cells in the rats of both groups on day 7 and 21 after BrdU. It was also demonstrated that status epilepticus at P15 did not result in any detectable mossy fiber sprouting within the hippocampus both 1 month and 3 months after KA administration.
CONCLUSIONSKA induced seizures can increase granule cell neurogenesis in the immature rat. Most of newly appeared cells migrate from subgranular proliferation zone (SGZ) into granule cell layer, the hilus as well as the molecular layer, and there they can differentiate into granule neurons. These observations also indicate that there is an early developmental resistance to seizure-induced mossy fiber sprouting in the immature brain.