High glucose impairs mitochondrial respiratory chain function in pancreatic beta cells.
- Author:
Zhan LIN
1
;
Yao-Ming XUE
;
Jian-Ping SHA
;
Rui-Rui MAO
;
Ke LONG
;
Dan SANG
Author Information
- Publication Type:Journal Article
- MeSH: Cell Respiration; drug effects; Cells, Cultured; Glucose; pharmacology; Humans; Insulin-Secreting Cells; cytology; physiology; Mitochondria; physiology; Oxidative Stress; drug effects
- From: Journal of Southern Medical University 2009;29(6):1251-1253
- CountryChina
- Language:Chinese
-
Abstract:
OBJECTIVETo investigate the effect of high glucose on mitochondrial respiratory chain function in INS-1 cells.
METHODSThe pancreatic beta cell line INS-1 was divided into the normal control (NC), high glucose (HG), and N-acetyl-L-cysteine (NAC) pretreatment groups, which were cultured for 72 h in the presence of 5.5 mmol/L glucose, 16.7 mmol/L glucose, and 16.7 mmol/L glucose with 1.0 mmol/L NAC, respectively. The activities of the enzyme complexes I and III of the respiratory chain in the cells were assessed with spectrophotometry, the ATP levels were examined using a luciferinluciferase kit, and insulin levels detected by radioimmunoassay.
RESULTSThe activities of the respiratory chain enzyme complexes I and III were 1.53-/+0.24 and 1.08-/+0.22 micromol.mg(-1).min(-1) in high glucose group, respectively, significantly lower than those in the normal control group (2.31-/+0.33 and 1.92-/+0.39 micromol.mg(-1).min(-1), P<0.01). ATP and insulin levels also decreased significantly in high glucose group as compared with those in the normal control group (P<0.01). The addition of NAC partially inhibited high glucose-induced decreases in the enzyme complex activities, ATP levels and insulin secretion (P<0.05).
CONCLUSIONThe respiratory chain function is positively correlated to insulin secretion in INS-1 cells, and exposure to high glucose causes impairment of the two enzyme complexes activities through oxidative stress, resulting in the mitochondrial respiratory chain dysfunction. High glucose-induced damages of the mitochondrial respiratory chain function can be partially inhibited by NAC.