Effects of fatty acid regulation on visfatin gene expression in adipocytes.
- Author:
Yu WEN
1
;
Hong-wei WANG
;
Jing WU
;
Hui-ling LU
;
Xiu-fen HU
;
Katherine CIANFLONE
Author Information
- Publication Type:Journal Article
- MeSH: 3T3-L1 Cells; Adipocytes; cytology; metabolism; Animals; Cell Differentiation; Cytokines; genetics; Dose-Response Relationship, Drug; Gene Expression Regulation; drug effects; Insulin Resistance; Mice; Nicotinamide Phosphoribosyltransferase; Oleic Acid; pharmacology; Palmitic Acid; pharmacology; RNA, Messenger; analysis; Stem Cells; metabolism
- From: Chinese Medical Journal 2006;119(20):1701-1708
- CountryChina
- Language:English
-
Abstract:
BACKGROUNDThe levels of long-term elevated serum or intracellular free fatty acid (FFA) induce insulin resistance associated with central obesity. The insulin-mimetic protein visfatin is preferentially produced by visceral adipose tissues and has been implicated in obesity and insulin resistance. To identify that FFA is capable of inducing insulin resistance and to clarify the role of FFA on visfatin, we examined the effect of monounsaturated FFA oleate (C18:1) and saturated FFA palmitate (C16:0) on glucose transport and visfatin gene expression in cultured 3T3-L1 adipocytes or preadipocytes.
METHODSFFA-free DMEM/F12, 0.125 mmol/L, 0.5 mmol/l and 1.0 mmol/L oleate or palmitate was added to cultured 3T3-L1 adipocytes or preadipocytes and incubated overnight. Glucose transport was assessed as (3)H-2-deoxy-glucose uptake. Total RNA was extracted and subjected to RT-PCR for the measurement of visfatin mRNA levels. Statistical comparisons between control group and other groups were performed with the two-tailed paired t test, and one-way ANOVA was used to compare the mean values among the groups.
RESULTSInsulin increased specific membrane glucose transport in 3T3-L1 preadipocytes. Upregulation was evident from 15 minutes to 1 hour exposure to insulin. However, after 6-hour exposure to insulin, there was a downregulation in the response to insulin. Dose response studies demonstrated that 2-deoxy glucose transport was increased by 336% at 50 nmol/L insulin (P < 0.01), and reached a maximal effect at 100 nmol/L insulin (P < 0.01). Oleate and palmitate treatment did not influence basal glucose transport (without insulin stimulation), whereas insulin-stimulated glucose transport was inhibited after overnight oleate and palmitate treatment in preadipocytes and adipocytes. In 3T3-L1 preadipocytes, insulin resistance could be achieved at 0.125 mmol/L oleate or palmitate (P < 0.05, respectively), and the inhibition was dose dependent. In adipocytes, the inhibition was noted at 0.5 mmol/L oleate or 1.0 mmol/L palmitate. Visfatin mRNA expression increased during differentiation more than 1.5-fold. Bovine serum albumin (BSA) did not influence visfatin mRNA expression compared with the control group. Dose-response studies demonstrated that addition of 0.125 mmol/L oleate and palmitate to 3T3-L1 adipocytes decreased visfatin mRNA expression significantly (78%, 77%, respectively, relative to untreated control, P < 0.05), and further to 65% (relative to untreated control, P < 0.05) and 55% (relative to untreated control, P < 0.01) at 1.0 mmol/L FFA. Furthermore, the suppression on preadipocytes was similar to that of adipocytes, which reached a maximal reduction of 44% (oleate, P < 0.05) and 47% (palmitate, P < 0.05) at 1.0 mmol/L FFA.
CONCLUSIONSOleic acid and palmitic acid may induce insulin resistance in 3T3-L1 adipocytes and preadipocytes. Downregulation of visfatin mRNA may contribute to impair insulin sensitivity caused by oleate and palmitate.