Application of SNP-array technology in the genetic analysis of pediatric patients with growth retardation.
- Author:
Shiyu LUO
1
;
Chunyun FU
;
Shujie ZHANG
;
Jin WANG
;
Xin FAN
;
Jingsi LUO
;
Rongyu CHEN
;
Xuyun HU
;
Haisong QIN
;
Chuan LI
;
Shan OU
;
Qifei LI
;
Shaoke CHEN
Author Information
- Publication Type:Journal Article
- MeSH: Adolescent; Child; Child, Preschool; Chromosome Aberrations; DNA Copy Number Variations; Developmental Disabilities; diagnosis; genetics; Female; Humans; Infant; Karyotyping; Male; Oligonucleotide Array Sequence Analysis; methods; Polymorphism, Single Nucleotide
- From: Chinese Journal of Medical Genetics 2017;34(3):321-326
- CountryChina
- Language:Chinese
-
Abstract:
OBJECTIVETo explore the value of single nucleotide polymorphism array (SNP-array) for the analysis of pediatric patients with growth retardation.
METHODSOne hundred eighty one children with growth retardation were enrolled. DNA was extracted from peripheral samples from the patients, and whole genome copy number variations (CNVs) were detected using Illumina Human Cyto SNP-12. All identified CNVs were further analyzed with reference to databases including ClinGen, ClinVar, DECIPHER, OMIM and DGV as well as comprehensive review of literature from PubMed to determine their pathogenicity.
RESULTSForty seven patients (26%) with abnormal CNVs were detected, which included 12 known microdeletions/microduplications syndrome (26%), 10 pathogenic non-syndromic CNVs (21%), 3 numerical chromosome aberrations (6%), 3 unbalanced translocations (6%), 4 pathogenic mosaicisms (9%) and 15 cases with unknown clinical significance (32%). After excluding obvious numerical and/or structural chromosomal abnormalities, this study has detected 15 pathogenic microdeletions/microduplications sized 5 Mb or less, which may be missed by routine chromosomal karyotyping. In addition, there were 3 cases with loss of heterozygoisty (LOH) containing known or predicted imprinting genes as well as 2 cases with suspected parental consanguinity.
CONCLUSIONSNP-array technology is a powerful tool for the genetic diagnosis of children with growth disorders with advantages of high resolution and improved accuracy.