Lipopolysaccharide Stimulates Surfactant Protein-A in Human Renal Epithelial HK-2 Cells through Upregulating Toll-like Receptor 4 Dependent MEK1/2-ERK1/2-NF-κB Pathway.
- Author:
Jiao LIU
1
;
Guang LI
1
;
Wen-Jie XIE
1
;
Lu WANG
1
;
Rui ZHANG
1
;
Ke-Sheng HUANG
1
;
Qing-Shan ZHOU
1
;
De-Chang CHEN
2
Author Information
- Publication Type:Journal Article
- MeSH: Cell Line; Cell Survival; drug effects; physiology; Colorimetry; Humans; Kidney; cytology; metabolism; Lipopolysaccharides; toxicity; Mitogen-Activated Protein Kinase 1; metabolism; Mitogen-Activated Protein Kinase 3; metabolism; NF-kappa B; metabolism; Pulmonary Surfactant-Associated Protein A; metabolism; Sulfonamides; pharmacology; Tetrazolium Salts; chemistry; Toll-Like Receptor 4; antagonists & inhibitors; metabolism
- From: Chinese Medical Journal 2017;130(10):1236-1243
- CountryChina
- Language:English
-
Abstract:
BACKGROUNDSurfactant protein-A (SP-A) contributes to the regulation of sepsis-induced acute kidney injury. In a previous study, we demonstrated that the expression of SP-A in the human renal tubular epithelial (HK-2) cells can be stimulated by lipopolysaccharide (LPS). The present study evaluated the possible signal-transducing mechanisms of LPS-induced SP-A biosynthesis in the HK-2 cells.
METHODSTetrazolium salt colorimetry (MTT) assay was used to detect cell viability of HK-2 cells after LPS stimulation on different time points. HK-2 cells were stimulated with 100 ng/ml of LPS for different durations to determine the effects of LPS on SP-A and toll-like receptor 4 (TLR4) messenger RNA (mRNA) expression, as well as phosphorylation of mitogen-activated/extracellular signal-regulated kinase (MEK) 1, extracellular signal-regulated kinase 1/2 (ERK1/2), p38 mitogen-activated protein kinase (p38MAPK), and nuclear factor-kappa B (NF-κB) inhibitor-alpha (IkB-α). Then, HK-2 cells were pretreated with CLI-095, a TLR4 inhibitor, to analyze mRNA and protein levels of SP-A and TLR4 and expression of NF-κB in the cytoplasm and nucleus of HK-2 before LPS exposure.
RESULTSHK-2 cells exposed to 100 ng/ml of LPS for 1, 6, and 24 h did not affect cell viability which showed no toxic effect of 100 ng/ml LPS on cells (P = 0.16); however, the biosynthesis of SP-A mRNA and protein in HK-2 cells was significantly increased (P = 0.02). As to the mechanism, LPS enhanced transmembrane receptor TLR4 protein expression. Sequentially, LPS time dependently augmented phosphorylation of MEK1, ERK1/2, and p38MAPK. In addition, levels of phosphorylated IκB-α and nuclear NF-κB were augmented with LPS exposure for 2 h. LPS-induced SP-A and TLR4 mRNA as well as NF-κB expression were significantly inhibited by pretreatment with CLI-095.
CONCLUSIONSThe present study exhibited that LPS can increase SP-A synthesis in human renal epithelial cells through sequentially activating the TLR4-related MEK1-ERK1/2-NF-κB-dependent pathway.