Preparation and the biological effect of fusion protein GLP-1-exendin-4/ IgG4(Fc) fusion protein as long acting GLP-1 receptor agonist.
- Author:
Yun-cheng ZHENG
- Publication Type:Journal Article
- MeSH:
Animals;
CHO Cells;
Cricetinae;
Cricetulus;
Diabetes Mellitus, Experimental;
drug therapy;
Glucagon-Like Peptide 1;
pharmacology;
Glucagon-Like Peptide-1 Receptor;
agonists;
Half-Life;
Humans;
Hypoglycemic Agents;
pharmacology;
Immunoglobulin G;
pharmacology;
Insulin;
secretion;
Mice;
Peptides;
pharmacology;
Recombinant Fusion Proteins;
pharmacology;
Venoms;
pharmacology
- From:
Acta Pharmaceutica Sinica
2015;50(12):1668-1672
- CountryChina
- Language:Chinese
-
Abstract:
GLP-1 has a variety of anti-diabetic effects. However, native GLP-1 is not suitable for treatment of diabetes due to its short half-life (t½, 2-5 min). Exendin-4 is a polypeptide isolated from lizard saliva, which can bind to GLP-1 receptor, produce physiological effects similar to GLP-1, t½ up to 2.5 h, therefore, we developed a long-lasting GLP-1 receptor agonists and GLP-1-exendin-4 fusion IgG4 Fc [GLP-1-exendin-4/ IgG4(Fc)]. We constructed the eukaryotic expression vector of human GLP-1-exendin-4/IgG4(Fc)-pOptiVEC- TOPO by gene recombination technique and expressed the fusion protein human GLP-1-IgG4 (Fc) in CHO/DG44 cells. The fusion protein stimulated the INS-1 cells secretion of insulin, GLP-1, exendin-4 and fusion protein in CD1 mice pharmacokinetic experiments, as well as GLP-1, exendin-4 and fusion protein did anti-diabetic effect on streptozotocin induced mice. Results demonstrated that the GLP-1-exendin-4/IgG4(Fc) positive CHO/DG44 clones were chosen and the media from these positive clones. Western blotting showed that one protein band was found to match well with the predicted relative molecular mass of human GLP-1-exendin-4/IgG4(Fc). Insulin RIA showed that GLP-1-exendin-4/IgG4(Fc) dose-dependently stimulated insulin secretion from INS-1 cells. Pharmacokinetic studies in CD1 mice showed that with intraperitoneal injection (ip), the fusion protein peaked at 30 min in circulation and maintained a plateau for 200 h. Natural biological half-life of exendin-4 was (1.39 ± 0.28) h, GLP-1 in vivo t½ 4 min, indicating that fusion protein has long-lasting effects on the modulation of glucose homeostasis. GLP-1-exendin-4/IgG4(Fc) was found to be effective in reducing the incidence of diabetes in multiple-low-dose streptozotocin-induced diabetes in mice, longer duration of the biological activity of the fusion protein. The biological activity was significantly higher than that of GLP-1 and exendin-4. GLP-1-exendin-4/IgG4(Fc) has good anti-diabetic activity. It can be used as a long-acting GLP-1 agonists.