Effect of laparoscopic sleeve gastrectomy on sex hormone in male severe obesity.
- Author:
Cuiling ZHU
1
;
Yi ZHANG
1
;
Xingchun WANG
1
;
Jingyang GAO
1
;
Liesheng LU
2
;
Donglei ZHOU
3
;
Shen QU
1
Author Information
- Publication Type:Journal Article
- MeSH: Adult; Bariatric Surgery; Blood Glucose; physiology; Body Mass Index; Body Weights and Measures; China; Estradiol; blood; physiology; Fasting; blood; Follicle Stimulating Hormone; blood; physiology; Follow-Up Studies; Gastrectomy; Glycated Hemoglobin A; physiology; Humans; Insulin; blood; physiology; Insulin Resistance; physiology; Luteinizing Hormone; blood; physiology; Male; Obesity, Morbid; surgery; Retrospective Studies; Testosterone; blood; physiology; Treatment Outcome; Weight Loss; physiology
- From: Chinese Journal of Gastrointestinal Surgery 2017;20(4):405-410
- CountryChina
- Language:Chinese
-
Abstract:
OBJECTIVETo investigate the effect of laparoscopic sleeve gastrectomy(LSG) on sex hormone in male patients with severe obesity.
METHODSRetrospective analysis was performed in 31 male patient with severe obese [body mass index(BMI) ≥28 kg/m, obesity group] who underwent LSG in Shanghai Tenth People's Hospital of Tongji University from December 2012 to May 2016. The anthropometric parameters(weight, BMI, waist circumference, hip circumference, waist-hip ratio, body fat percentage), glucose metabolic indices [fasting plasma glucose(FPG), fasting insulin (FINS), glycosylated hemoglobin (HbA1c), homeostasis model assessment-insulin resistance index(HOMA-IR)], and sex hormone parameters [estradiol(E2), total testosterone (TT), follicle-stimulating hormone (FSH) and luteinizing hormone (LH)] were collected preoperatively and 1, 3, 6 months postoperatively. In addition, 31 healthy male volunteers with normal BMI were consecutively recruited in this study as control group. The above-mentioned parameters were also determined in control group. Changes of these variables before and after surgery were analyzed. Pearson method was used to analyze the correlation of TT with anthropometric parameters and glucose metabolic indices before and after surgery.
RESULTSThe average age of patients in obesity and control group was (32.9±9.7) (18 to 56) years and (30.7±8.9) (18 to 49) years. Compared to the control group, obesity group had significantly higher anthropometric parameters and glucose metabolic indices before surgery (all P<0.05). In obesity group, the anthropometric and glucose metabolic indices significantly decreased at 1 to 6 months after surgery compared to those before surgery (all P<0.05). At 1 month after surgery, the anthropometric parameters and glucose metabolic indices in obesity group were significantly higher than those in control group (all P<0.05). At 3, and 6 months after surgery, there were no significant differences in glucose metabolic indices between obesity and control group (all P>0.05), while the anthropometric parameters in obesity group were still significantly higher than those in control group(all P<0.05). The sex hormone parameters in control and obesity group before surgery were as follows: E2: (100.2±23.5) pmol/L and (129.2±81.9) pmol/L; TT: (18.0±4.9) nmol/L and (8.4±4.5) nmol/L; FSH: (4.5±3.1) IU/L and (4.3±2.5) IU/L; LH: (4.4±1.7) IU/L and (5.3±2.6) IU/L. Compared to control group, the TT level of obese patients before surgery significantly decreased(P=0.000), while no significant differences were observed in the levels of E2, FSH, and LH(all P>0.05). The TT levels were significantly increased at 1, 3, 6 months after surgery[(13.1±7.0), (13.6±5.7), (21.0±19.3) nmol/L, respectively, all P<0.05] and the E2 level was significantly decreased at 6 months after surgery [(91.4±44.9) pmol/L, P<0.05], while no significant differences were observed at 1 and 3 months after surgery (all P>0.05). Furthermore, the FSH and LH levels did not exhibit significant change at 1, 3, and 6 months after surgery compared to those before surgery (all P>0.05). At 1 month after surgery, no significant correlations were examined in the change value of TT levels (▹TT) with the changes of BMI(▹BMI), FPG(▹FPG), FINS(▹FINS), HOMA-IR(▹HOMA-IR), and E2(▹E2) (all P>0.05). At 3 months after surgery, ▹TT was negatively correlated with ▹BMI (r=-0.441, P=0.015), ▹FINS (r=-0.375, P=0.041), and ▹HOMA-IR(r=-0.397, P=0.030), but not correlated with ▹FPG and ▹E2 (all P>0.05). At 6 months after surgery, ▹TT was negatively correlated with ▹BMI(r=-0.510, P=0.018) and ▹HOMA-IR (r=-0.435, P=0.049), but not correlated with ▹FPG, ▹FINS and ▹E2 (all P>0.05).
CONCLUSIONSMale severe obese patients are accompanied with abnormal sex hormone levels. LSG has a significant effect on weight loss and blood glucose improvement, and may ameliorate the sex hormone unbalance by improving the insulin resistance in men with severe obesity.