c-erbB(2) and c-myb induce oocyte maturation via activation of mitogen-activated protein kinase and maturation promoting factor.
- Author:
Yue-Hui ZHENG
1
;
Li-Ping ZHENG
;
Fang LI
;
Lei WU
;
Yu-Cheng DAI
Author Information
1. Department of Physiology, School of Medicine, Nanchang University, Nanchang 330006, China.
- Publication Type:Journal Article
- MeSH:
Animals;
Female;
Maturation-Promoting Factor;
metabolism;
Mice;
Microinjections;
Mitogen-Activated Protein Kinases;
metabolism;
Oocytes;
physiology;
Oogenesis;
Proto-Oncogene Proteins c-myb;
metabolism;
Receptor, ErbB-2;
metabolism;
Signal Transduction
- From:
Acta Physiologica Sinica
2008;60(1):97-104
- CountryChina
- Language:Chinese
-
Abstract:
It is important to study the mechanism of oocyte maturation because oocyte maturation is essential for the female procreation. The present study was designed to observe the effects of protooncogenes c-erbB(2) and c-myb on oocyte maturation and the upstream and downstream relationship with mitogen-activated protein kinase (MAPK) and maturation promoting factor (MPF). The investigation was designed as follows: (1) In order to explore the effects of protooncogenes on oocyte maturation, the dose- and time-dependent effects of c-erbB(2) antisense oligodeoxynucleotide (ASODN) and c-myb ASODN on oocyte maturation were examined, and the effects of oocyte microinjection with recombinant c-erbB(2) and c-myb proteins on oocyte maturation were investigated; (2) In order to study the upstream and downstream relationship among protooncogenes of c-erbB(2), c-myb and protein kinases of MAPK and MPF in regulating oocyte maturation, mouse oocytes were cultured in the medium treated with c-erbB(2) ASODN, c-myb ASODN, PD98059 (the MAPK inhibitor) or roscovitine (the MPF inhibitor) for 8 h, respectively, and the expressions of c-erbB(2) mRNA, c-myb mRNA, MAPK and MPF were examined. The results showed that both c-erbB(2) ASODN and c-myb ASODN inhibited the rate of germinal vesicle breakdown (GVBD) and the first polar (PB1) extrusion of denuded oocytes (DOs) in a dose- and time-dependent way, and delayed their maturation time significantly. When recombinant c-erbB(2) and c-myb proteins were microinjected into cytoplasm of germinal vesicle stage oocyte, we found that the GVBD rate increased by 23.1% (P<0.05) and 32.2% (P<0.05), respectively, for 6-hour culture, and the PB1 extrusion rate increased by 17.3% (P<0.05) and 23.5% (P<0.05), respectively, for 12-hour culture. RT-PCR showed that the mRNA expressions of c-erbB(2) and c-myb were detected in oocytes; c c-erbB(2) ASODN inhibited c-erbB(2) mRNA and c-myb mRNA expressions; c-myb ASODN inhibited c-myb mRNA expression but had no effect on c-erbB(2) mRNA expression. Nonsense tat ODN had no effects on the expressions of c-erbB(2) mRNA and c-myb mRNA. Neither PD98059 nor roscovitine changed the expressions of c-erbB(2) mRNA and c-myb mRNA though both of them inhibited recombinant c-erbB(2) and c-myb proteins-induced oocyte maturation. Furthermore, MAPK phosphorylation and cyclin B1 synthesis in oocytes were inhibited remarkably when oocytes were treated with c-erbB(2) ASODN, c-myb ASODN, PD98059 and roscovitine. Nonsense tat ODN had no effects on MAPK phosphorylation and cyclinB1 content. The results suggest that protooncogenes c-erbB(2) and c-myb play an important role in oocyte maturation; the effects of c-erbB(2) and c-myb depend upon the action of MAPK and MPF, and their activation is the event that occurs downstream of c-erbB(2) and c-myb in the maturation signal pathway.