Effect of topical application of aminoguanidine cream on skin tissue of rats with diabetes.
- Author:
Ming TIAN
1
;
Chun QING
;
Xiao-Zan CAO
;
Yi-Wen NIU
;
Shu-Liang LU
Author Information
- Publication Type:Journal Article
- MeSH: Administration, Cutaneous; Animals; Cell Proliferation; Diabetes Mellitus, Experimental; metabolism; pathology; Glycation End Products, Advanced; metabolism; Guanidines; administration & dosage; pharmacology; Keratinocytes; drug effects; Male; Ointments; administration & dosage; pharmacology; Oxidative Stress; drug effects; Rats; Rats, Sprague-Dawley; Skin; drug effects; metabolism; pathology
- From: Chinese Journal of Burns 2011;27(1):21-25
- CountryChina
- Language:Chinese
-
Abstract:
OBJECTIVETo investigate the effects of aminoguanidine cream on the proliferation of keratinocytes (KC), content of advanced glycosylation end products (AGE) and oxidative stress in skin tissue of rats with diabetes.
METHODSStearic acid, liquid paraffin, vaseline, lanolin, isopropyl myristate fat, glycerol, 50 g/L alcohol paraben, aminoguanidine hydrochloride etc. were mixed in certain proportion to make aminoguanidine cream, and cream without aminoguanidine was used as matrix. The dorsal skin of normal rats were harvested and treated by aminoguanidine cream with dose of 5, 10 g/L, or 5 g/L together with 10 g/L azone. The transdermal effect was respectively measured at post treatment hour 2, 4, 7, 10, 12, 24. Thirty SD rats were divided into normal control (NC, n = 6), diabetes (D, n = 8), aminoguanidine cream-interfered (AI, n = 8), matrix cream-interfered groups (MI, n = 8) according to the random number table. Diabetes was reproduced by intraperitoneal injection of STZ (65 mg/kg) in rats of D, AI, and MI groups, and rats in NC group were injected with 0.05 mmol/L citrate buffer as control. One week later, dorsal skin of rats in AI and MI groups were respectively treated with 10 g/L aminoguanidine cream and matrix cream by external use for 4 weeks. AGE content was determined with fluorescence detection from skin collagen extract. KC cell cycle was detected by flow cytometry. Skin tissue specimens were obtained for determination of levels of superoxide dismutase (SOD), malondialdehyde (MDA), myeloperoxidase (MPO), and total antioxidant capacity. Data were processed with t test.
RESULTSTransdermal effect of aminoguanidine cream with dose of 10 g/L was better than that with 5 g/L or 5 g/L + 10 g/L azone cream. One rat was not induced successfully in MI group. Four weeks after model reproduction, 4 rats died in D group and 1 rat died in AI group. The AGE content in D group was obviously higher than that in NC group [(36.8 +/- 2.6), (24.6 +/- 2.7) U per milligram hydroxyproline, respectively, t = 7.2, P < 0.01], and that in AI group [(28.6 +/- 3.7) U per milligram hydroxyproline] was also lower as compared with that in D group (t = -3.9, P < 0.05). There was no significant difference in AGE content between MI [(32.2 +/- 5.2) U per milligram hydroxyproline] and D groups (t = 1.6, P > 0.05). The percentage of KC in S phase was obviously lower in D group than in NC group [(5.3 +/- 0.6)%, (7.6 +/- 0.9)%, respectively, t = 4.50, P < 0.01], while that in MI group [(9.2 +/- 1.5)%] was higher as compared with that in D group ( t = 4.90, P < 0.01). It was more higher in AI group than in D group on KC percentage in S and G2/M phase (with t value respectively 6.80, 3.17, P values all below 0.01). The oxidative stress indexes of skin tissue in D group were all higher than those in NC group, in which levels of MPO and SOD showed statistical difference (with t value respectively 4.4, 3.7, P values all below 0.05). The oxidative stress indexes were all lower in AI group than in D group, especially in SOD level (t = -1.4, P < 0.05). Levels of MAD, MPO in MI group were significantly lower than those in D group (with t value respectively 2.6, 2.9, P values all below 0.05).
CONCLUSIONSAminoguanidine cream can promote KC proliferation and appropriately reduce oxidative stress through inhibiting AGE formation to a certain extent in skin tissue of rats with diabetes. Signal use of matrix cream can also reduce oxidative stress in skin tissue of rats with diabetes.