SNR and ADC Changes at Increasing b Values among Patients with Lumbar Vertebral Compression Fracture on 1.5T MR Diffusion Weighted Images.
- Author:
Jae Hwan CHO
1
;
Cheol Soo PARK
;
Sun Yeob LEE
;
Bo Hui KIM
Author Information
1. Department of Radiology, Soonchunhyang University, Bucheon Hospital, Bucheon, Korea.
- Publication Type:Original Article
- Keywords:
Diffusion-weighted image;
Vertebral compression fracture;
b value;
Signal to noise ratio (SNR);
Apparent diffusion coefficient (ADC)
- MeSH:
Diffusion;
Fractures, Compression;
Hand;
Humans;
Noise;
Osteoporosis;
Signal-To-Noise Ratio
- From:Korean Journal of Medical Physics
2010;21(1):52-59
- CountryRepublic of Korea
- Language:Korean
-
Abstract:
To examine among patients with vertebral compression fracture the extent to which signal-to-noise ratio (SNR) and Apparent Diffusion Coefficient (ADC) values at the lumbar vertebral compression fracture site vary on diffusion-weighted MR images according to varying b values on the 1.5T MR device. Diffusion-weighted MR images of 30 patients with compression fracture due to chronic osteoporosis who underwent vertebral MRI from Jan. 2008 to Nov. 2009 were respectively obtained using a 1.5-T MR scanner with the b values increased from 400, 600, 800, 1,000 to 1,200 s/mm2. For diffusion-weighted MR images with different b values, the signal-to-noise ratio (SNR) was assessed at three sites: the site of compression fracture of the lumbar vertebral body at L1 to L5, and both the upper and lower discs of the said fracture site, while for ADC map images with different b values, the SNR and ADC were respectively assessed at those three sites. As a quantitative analysis, diffusion-weighted MR images and ADC map images with b value of 400 s/mm2 (the base b values) were respectively compared with the corresponding images with each different b value. As far as qualitative analysis is concerned, for both diffusion-weighted MR and ADC map images with b value of 400 s/mm2, the extent to which signal intensity values obtained at the site of compression fracture of the lumbar vertebral body at L1 to L5 vary according to the increasing b values were examined. The quantitative analysis found that for both diffusion-weighted MR and ADC map images, as the b values increased, the SNR were relatively lowered at all the three sites, compared to the base b value. Also, it was found that as the b values increased, ADC values were relatively lowered at all the three sites on ADC map images. On the other hand, the qualitative analysis found that as the b values increased to more than 400 s/mm2, the signal intensity gradually decreased at all the sites, while at the levels of more than 1,000 s/mm2, severe image noises appeared at all of the three sites. In addition, higher signal intensity was found at the site of compression fracture of the lumbar vertebral body than at the discs. Findings showed that with the b value being increased, both the signal-to-noise ratio (SNR) and Apparent Diffusion Coefficient (ADC) values gradually decreased at all the sites of the lumbar vertebral compression fracture and both the upper and lower discs of the fracture site, suggesting that there is a possibility of a wider range of applications to assessment of various vertebral pathologies by utilizing multi b values in the diffusion-weighted MRI examination.