In vitro studies of Raf-CREB, Akt-CREB, and CaMK II -CREB signal transduction pathway regulated by ginsenosides Rb1, Rg1 and Re.
- Author:
Ting-Ting WANG
;
Xian-Zhe DONG
;
Wan-Wan LIU
;
Yi-Hong CHEN
;
Ping LIU
- Publication Type:Journal Article
- MeSH: Calcium-Calmodulin-Dependent Protein Kinase Type 2; genetics; metabolism; Cell Line; Cell Survival; drug effects; Cyclic AMP Response Element-Binding Protein; genetics; metabolism; Drugs, Chinese Herbal; pharmacology; Genes, Reporter; Ginsenosides; pharmacology; Humans; Panax; chemistry; Proto-Oncogene Proteins c-akt; genetics; metabolism; Signal Transduction; drug effects; raf Kinases; genetics; metabolism
- From: China Journal of Chinese Materia Medica 2014;39(11):2065-2070
- CountryChina
- Language:Chinese
-
Abstract:
OBJECTIVEEffects of ginsenoside Rb1, Rg1 and Re on neurotrophic factor signal transduction pathway using liposome-mediated transfection of eukaryotic cells approach.
METHODThe injury model was established by treating SH-SY5Y cells with 0.6 mmol x L(-1) of corticosterone (CORT) by 24 h. SH-SY5Y cell were pretreated with CORT for 30 min followed by co-treated with 120,60 and 20 micromol x L(-1) of Rb1, 120, 80 and 40 micromol x L(-1) of Rg1 and 120, 80 and 40 micromol x L(-1) of Re for 24 h. Cells viability was determined by Cell Counting Kit (CCK) assay. CREB expressing Luciferase reporter gene was constructed and transfected with plasmid containing hRaf, hcAMP, hAkt, hCaMK gene into human embryonic kidney (HEK293) cells using liposornal transfection reagent lipofection 2000. The expression of CREB before and after it addion of Rb1, Rg1 and Re was examined by Luc assay system and Western blotting.
RESULTCompared with normal control group, CORT significantly decreased the viability of SH-SY5Y cells to 67.21% (P < 0.01). CCK results show that Rb1 (60 micromol x L(-1)), Rg1 (80 micromol x L(-1)) and Re (80 micromol x L(-1)) on SH-SY5Y cells have significant protective effect (P < 0.01). Lucassay and Western blotting results show that the gene and protein levels of CREB increased significantly through the pathway of Raf and Akt with Rb1 and Rg1 (P < 0.01), Re can increase significantly the gene and protein levels of CREB through the pathway of Raf and CaMK II.
CONCLUSIONRb1, Rg1 and Re protects SH-SY5Y cells from CORT-induced damage and the neuroprotective mechanism may be associated with the Raf-CREB, Akt-CREB and CaMK II -CREB pathways.