Immunoprotective effect of combined pneumococcal endopeptidase O and pneumococcal surface adhesin A vaccines against Streptococcus pneumoniae infection.
- Author:
Jing ZHANG
1
;
Ya-Li CUI
;
Yong-Mei JIANG
Author Information
- Publication Type:Journal Article
- MeSH: Adhesins, Bacterial; immunology; Animals; Antibodies, Bacterial; analysis; Bacterial Proteins; immunology; Female; Immunization; Lipoproteins; immunology; Lung; microbiology; Metalloendopeptidases; immunology; Mice; Mice, Inbred BALB C; Pneumococcal Infections; prevention & control; Pneumococcal Vaccines; immunology; Saliva; immunology
- From: Chinese Journal of Contemporary Pediatrics 2017;19(5):583-589
- CountryChina
- Language:Chinese
-
Abstract:
OBJECTIVETo investigate the prokaryotic expression of proteins pneumococcal endopeptidase O (PepO) and pneumococcal surface adhesin A (PsaA) in Streptococcus pneumoniae and their immunoprotective effect as vaccine candidate proteins.
METHODSSpecific primers of target gene fragments were designed, and then PCR amplification was performed to establish recombinant plasmids pET28a(+)-pepO and pET28a(+)-psaA, which were transformed into host cells, Escherichia coli BL21 and DE3, respectively, to induce expression. Highly purified target proteins PepO and PsaA were obtained after purification. Mucosal immunization was performed for BALB/c mice and specific antiserum was prepared. ELISA was used to measure the antibody titer, and Western blot was used to analyze the specificity of the antiserum of target proteins. The mice were randomly divided into negative control group, PepO group, PsaA group, and PepO+PsaA combined immunization group, with 18 mice in each group. The models of different serotypes of Streptococcus pneumoniae infection were established to evaluate the immunoprotective effect of target proteins used alone or in combination.
RESULTSThe target proteins PepO and PsaA were successfully obtained and Western blot demonstrated that the antiserum of these proteins had good specificity. There was no significant difference in the titers of IgA in saliva and IgG in serum between the PepO group and the combined immunization group (P>0.05); however, these two groups had significantly higher antibody titers than the PsaA group (P<0.05). The PepO, PsaA, and combined immunization groups had significantly higher protection rates for mice infected with Streptococcus pneumoniae D39 and CMCC31436 in the nasal cavity than the negative control group (P<0.05). The PepO and combined immunization groups had a significantly higher protection rate for mice infected with Streptococcus pneumoniae D39 than the PsaA group (P<0.05). The results of colonization experiment showed that compared with the control group, the PepO, PsaA, and combined immunization groups showed a significant reduction in the colonization of Streptococcus pneumoniae (CMCC31693 and CMCC31207) in the nasopharynx and lung (P<0.05). The combined immunization group showed a better effect on reducing the colonization of CMCC31207 in the lung than the PepO and PsaA alone groups.
CONCLUSIONSCombined PepO/PsaA vaccines may produce a better protective effect by mucosal immunization compared with the vaccine used alone in mice. The combined vaccines can effectively reduce the colonization of Streptococcus pneumoniae in the nasopharynx and lung. Therefore, such protein vaccines may have a great potential for research and development.