Effects of microRNA-29 family members on proliferation and invasion of gastric cancer cell lines.
- Author:
Nan LANG
1
;
Ming LIU
;
Qiu-Lin TANG
;
Xi CHEN
;
Zhen LIU
;
Feng BI
Author Information
- Publication Type:Journal Article
- MeSH: Animals; Cell Line, Tumor; Cell Movement; Cell Proliferation; Gene Expression Regulation, Neoplastic; Humans; Mice; MicroRNAs; genetics; metabolism; NIH 3T3 Cells; Neoplasm Invasiveness; Phosphorylation; Stomach Neoplasms; genetics; metabolism; pathology; Transfection; cdc42 GTP-Binding Protein; metabolism; p21-Activated Kinases; metabolism
- From:Chinese Journal of Cancer 2010;29(6):603-610
- CountryChina
- Language:English
-
Abstract:
BACKGROUND AND OBJECTIVEMicroRNAs have emerged as post-transcriptional regulators that are critically involved in the biologic behavior of cells. This study was designed to investigate the effect of members of the microRNA-29 family on the expression of cell division cycle 42 (Cdc42) and their roles on proliferation, migration, and invasion of gastric cancer cells.
METHODSWe detected microRNA-29s and Cdc42 expression in gastric cancer cells by real-time polymerase chain reaction (PCR) and Western blot analysis. Negative controlled RNA (ncontrol), microRNA-29 family members (microRNA-29a, -29b, and -29c), and Cdc42-specific small interfering RNA (si-Cdc42) were chemically synthesized and transfected into SGC7901 and BGC823 gastric cancer cells, which have a relatively low expression of microRNA-29s and a relatively high expression of Cdc42. The expression of Cdc42 and the phosphorylation of its downstream molecular PAK1 expressions were determined by Western bolt analysis. Cell Counting Kit-8 was used to measure cell proliferation, and wound-healing and invasion assays were used to examine the abilities of migration and invasion.
RESULTSSimilar to si-Cdc42, the ectopic expression of microRNA-29 family members significantly reduced the expression of Cdc42 and its downstream molecular PAK1 phosphorylation levels. Consistently, ectopic expression of microRNA-29s inhibited proliferation and migration in gastric cancer cells. Invasive cell counts of the SGC7901, ncontrol/SGC7901, si-Cdc42/SGC7901, microRNA-29a/SGC7901, microRNA-29b/SGC7901, and microRNA-29c/SGC7901 cell groups were 84.0+/-4.2, 71.7+/-4.6, 16.3+/-3.2, 15.7+/-3.8, 16.3+/-3.0, and 16.7+/-3.1, respectively. The invasive cell counts of the BGC823, ncontrol/BGC823, si-Cdc42/BGC823, microRNA-29a/BGC823, microRNA-29b/BGC823, and microRNA-29c/BGC823 cell groups were 199.0+/-10.5, 146.3+/-9.7, 72.7+/-8.2, 86.7+/-8.5, 86.0+/-8.5, and 73.3+/-8.3, respectively (P<0.05).
CONCLUSIONSMembers of the microRNA-29 family can obviously inhibit cell proliferation, migration, and invasion of gastric cancer cells by targeting Cdc42.