Effect of Buyang Huanwu Decoction on mRNA Expressions of Aorta Rho Kinase and NF-κB p65 in Atherosclerosis Model Rats.
- Author:
Hong-zhen ZHANG
;
Li LI
;
Rui JIAO
;
Ying ZHANG
;
Yan QIAN
- Publication Type:Journal Article
- MeSH: Animals; Aorta; Atherosclerosis; genetics; metabolism; Drugs, Chinese Herbal; pharmacology; therapeutic use; Gene Expression; drug effects; Lipids; Lipoproteins, LDL; NF-kappa B; metabolism; RNA, Messenger; metabolism; Rats; Simvastatin; Transcription Factor RelA; metabolism; rho-Associated Kinases; metabolism
- From: Chinese Journal of Integrated Traditional and Western Medicine 2015;35(12):1495-1500
- CountryChina
- Language:Chinese
-
Abstract:
OBJECTIVETo observe the effect of Buyang Huanwu Decoction (BYHWD), a representative formula of qi benefiting blood activating method on aorta Rho associated coiled-coil forming protein serine/threonine kinase (Rhokinase, ROCK) and nuclear transcription factor kappa B (NF-κB) p65 mRNA expressions and levels of blood lipids in atherosclerosis (AS) model rats.
METHODSThe AS rat model was prepared by vitamin D3 and high fat diet. Totally 60 rats were randomly divided into 6 groups, i.e., the normal control group, the model group, the low dose BYHWD group (10 g/kg), the high dose BYHWD group (20 g/kg), the Simvastatin control group (0.6 mg/kg), and the BYHWD prevention group (10 g/kg), 10 in each group. After successful modeling all medication was intervened for 28 days. Expression levels oxidized low density lipoprotein (ox-LDL) were detected by ELISA. Levels of TG, TC, LDL-C, HDL-C were determined by enzyme method. Pathological changes of aortic tissue were observed under light microscope. mRNA expressions of Rho kinase and NF-κB p65 in aorta were detected by real time (RT) PCR.
RESULTSHigh fat diet and peritoneal injection of vitamin D3 could induce AS rat model. Typical atheromatous plaque formed in aorta of AS model rats. Compared with the normal control group, levels of TC, TG, LDL-C, and ox-LDL significantly increased in the model group, but the HDL-C level decreased (P < 0.01). Compared with the model group, levels of TC, TG, LDL-C, and ox-LDL all decreased, but HDL-C increased in low and high dose BYHWD groups, the Simvastatin control group, and the BYHWD prevention group (P < 0.05, P < 0.01). Compared with the low dose BYHWD group, above-mentioned indices were more obviously lowered in the high dose BYHWD group, the Simvastatin control group, and the BYHWD prevention group (P < 0.05). Compared with the normal control group, mRNA expression levels of Rho kinase and NF-κB p65 significantly increased in the model group (P < 0.01). Compared with the model group, mRNA expressions of Rho kinase and NF-κB p65 obviously decreased in low and high dose BYHWD groups, the Simvastatin control group, and the BYHWD prevention group (P < 0.01). Compared with the low dose BYHWD group, the two indicators were more obviously lowered in the high dose BYHWD group, the Simvastatin control group, and the BYHWD prevention group (P < 0.05). But there was no statistical difference in blood lipids levels, mRNA expression levels of Rho kinase or NF-κB p65 among the high dose BYHWD group, the Simvastatin control group, and the BYHWD prevention group (P >0. 05).
CONCLUSIONSBYHWD could down-regulate mRNA expression levels of Rho kinase and NF-κB p65, lower levels of blood lipids, and fight against AS. Suppressing Rho kinase pathway might be one of its mechanisms.