Effects of GSM 1800 MHz radiofrequency electromagnetic fields on DNA damage in Chinese hamster lung cells.
- Author:
Dan-ying ZHANG
1
;
Zheng-ping XU
;
Huai CHIANG
;
De-qiang LU
;
Qun-li ZENG
Author Information
- Publication Type:Journal Article
- MeSH: Animals; Cells, Cultured; Cricetinae; Cricetulus; DNA Breaks, Double-Stranded; radiation effects; DNA Damage; radiation effects; Electromagnetic Fields; adverse effects; Fibroblasts; chemistry; radiation effects; Radio Waves
- From: Chinese Journal of Preventive Medicine 2006;40(3):149-152
- CountryChina
- Language:Chinese
-
Abstract:
OBJECTIVETo study the effects of GSM 1800 MHz radiofrequency electromagnetic fields (RF EMF) on DNA damage in Chinese hamster lung (CHL) cells.
METHODSThe cells were intermittently exposed or sham-exposed to GSM 1800 MHz RF EMF (5 minutes on/10 minutes off) at a special absorption rate (SAR) of 3.0 W/kg for 1 hour or 24 hours. Meanwhile, cells exposed to 2-acetylaminofluorene, a DNA damage agent, at a final concentration of 20 mg/L for 2 hours were used as positive control. After exposure, cells were fixed by using 4% paraformaldehyde and processed for phosphorylated form of H2AX (gammaH2AX) immunofluorescence measurement. The primary antibody used for immunofluorescence was mouse monoclonal antibody against gammaH2AX and the secondary antibody was fluorescein isothiocyanate (FITC)-conjugated goat anti-mouse IgG. Nuclei were counterstained with 4, 6-diamidino-2-phenylindole (DAPI). The gammaH2AX foci and nuclei were visualized with an Olympus AX70 fluorescent microscope. Image Pro-Plus software was used to count the gammaH2AX foci in each cell. For each exposure condition, at least 50 cells were selected to detect gammaH2AX foci. Cells were classified as positive when more than five foci were detected. The percentage of gammaH2AX foci positive cells was adopted as the index of DNA damage.
RESULTSThe percentage of gammaH2AX foci positive cell of 1800 MHz RF EMF exposure for 24 hours (37.9 +/- 8.6)% or 2-acetylaminofluorene exposure (50.9 +/- 9.4)% was significantly higher compared with the sham-exposure (28.0 +/- 8.4)%. However, there was no significant difference between the sham-exposure and RF EMF exposure for 1 hour (31.8 +/- 8.7)%.
CONCLUSION1800 MHz RF EMF (SAR, 3.0 W/kg) for 24 hours might induce DNA damage in CHL cells.