The metabolic profilings study of serum and spinal cord from acute spinal cord injury rats ¹H NMR spectroscopy.
- Author:
Hua-Hui HU
;
Xiao-Long HUANG
;
Ren-Fu QUAN
1
,
2
;
Zong-Bao YANG
;
Jing-Jing XU
Author Information
- Publication Type:Journal Article
- Keywords: Metabonomics; Nuclear magnetic resonance; Spinal cord injury
- From: China Journal of Orthopaedics and Traumatology 2017;30(2):152-158
- CountryChina
- Language:Chinese
-
Abstract:
OBJECTIVETo establish the rat model of acute spinal cord injury, followed by aprimary study on this model with ¹H NMR based on metabonomics and to explore the metabonomics and biomarkers of spinal cord injury rat.
METHODSTwenty eight-week-old adult male SD rats of clean grade, with body weight of (200±10) g, were divided into sham operation group and model group in accordance with the law of random numbers, and every group had 10 rats. The rats of sham operation group were operated without damaging the spinal cord, and rats of model group were made an animal model of spinal cord incomplete injury according to the modified Allen's method. According to BBB score to observate the motor function of rats on the 1th, 5th, and 7th days after surgery. Postoperative spinal cord tissue was collected in order to pathologic observation at the 7th day, and the metabolic profilings of serum and spinal cord from spinal cord injury rats were studied by ¹H NMR spectroscopy.
RESULTSThe hindlimb motion of rats did not obviously change in sham operation group, there was no significant difference at each time point;and rats of model group occurred flaccid paralysis of both lower extremities, there was a significant difference at each time; there was significant differences between two groups at each time. Pathological results showed the spinal cord structure was normal with uniform innervation in shame group, while in model group, the spinal cord structure was mussy, and the neurons were decreased, with inflammatory cells and necrotic tissue. Analysis of metabonomics showed that concentration of very low density fat protein (VLDL), low density fat protein (LDL), glutamine, citric acid, dimethylglycine (DMG) in the serum and glutathione, 3-OH-butyrate, N-Acetyl-L-aspartic acid (NAA), glycerophosphocholine (GPC), glutamic acid, and ascorbate in spinal cord had significant changes(<0.05).
CONCLUSIONSThere are significant differences in metabolic profile from serum and spinal cord sample between model group and sham operation group, it conduces to explain the changes of small molecular substances in serum and spinal cord tissue after spinal cord injury, this provides the research basis for targeted research on the role of metabolic markers in patients with acute spinal cord injury.