Depression of the Thoracolumbar Posterior Vertebral Body on the Estimation of Cement Leakage in Vertebroplasty and Kyphoplasty Operations.
- Author:
Hao CHEN
;
Pu JIA
;
Li BAO
;
Fei FENG
;
He YANG
;
Jin-Jun LI
;
Hai TANG
1
Author Information
- Publication Type:Journal Article
- MeSH: Aged; Female; Fractures, Compression; surgery; Humans; Kyphoplasty; methods; Male; Middle Aged; Osteoporotic Fractures; surgery; Retrospective Studies; Spinal Fractures; surgery; Vertebroplasty; methods
- From: Chinese Medical Journal 2015;128(23):3158-3162
- CountryChina
- Language:English
-
Abstract:
BACKGROUNDThe cross-section of thoracolumbar vertebral body is kidney-shaped with depressed posterior boundary. The anterior wall of the vertebral canal is separated from the posterior wall of the vertebral body on the lateral X-ray image. This study was designed to determine the sagittal distance between the anterior border of the vertebral canal and the posterior border of the vertebral body (DBCV) and to analyze the potential role of DBCV in the estimation of cement leakage during percutaneous vertebroplasty (PVP) or percutaneous kyphoplasty (PKP).
METHODSWe retrospectively recruited 233 patients who had osteoporotic vertebral compression fractures and were treated with PVP or PKP. Computed tomography images of T11-L2 normal vertebrae were measured to obtain DBCV. The distance from cement to the posterior wall of the vertebral body (DCPW) of thoracolumbar vertebrae was measured from C-arm images. The selected vertebrae were divided into two groups according to DCPW, with the fracture levels, fracture grades and leakage rates of the two groups compared. A relative operating characteristic (ROC) curve was applied to determine whether the DCPW difference can be used to estimate the degree of cement leakage. The data were processed by statistical software SPSS version 21.0 using independent sample t-test and Chi-square tests.
RESULTSThe maximum DBCV was 6.40 mm and the average DBCV was 3.74 ± 0.95 mm. DBCV appeared to be longer in males than in females, but the difference was not statistically significant. The average DCPW of type-B leakage vertebrae (2.59 ± 1.20 mm) was shorter than that of other vertebrae (7.83 ± 2.38 mm, P < 0.001). The leakage rate of group DCPW ≤6.40 mm was lower than that of group DCPW >6.40 mm for type-C and type-S, but much higher for type-B. ROC curve revealed that DCPW only has a predictive value for type-B leakage (area under the curve: 0.98, 95% confidence interval: 0.95-0.99, P < 0.001), and when the cut-off value was 4.05 mm, the diagnostic sensitivity and the specificity were 94.87% and 93.02%, respectively.
CONCLUSIONSDepression of the thoracolumbar posterior vertebral body may be informative for the estimation of cement location on C-arm images. To reduce type-B leakage, DCPW should be made longer than DBCV on C-arm images for safety during PVP or PKP.