Analysis of broad-sense heritability and genetic correlation of production and content of glycyrrhizin of annual Glycyrrhiza uralensis.
- Author:
Shengli WEI
1
;
Wenquan WANG
;
Changli LIU
;
Jiyong WANG
;
Ruifeng ZHANG
;
Minbin SUN
Author Information
- Publication Type:Journal Article
- MeSH: Biomass; Glycyrrhiza uralensis; chemistry; genetics; growth & development; Glycyrrhizic Acid; analysis; metabolism
- From: China Journal of Chinese Materia Medica 2012;37(5):553-557
- CountryChina
- Language:Chinese
-
Abstract:
OBJECTIVETo estimate the broad-sense heritability of the production of Glycyrrhiza uralensis and the content of glycyrrhizin as well as the genetic relationship of various growth indexes and biomass indexes, and provide the scientific basis for establishment of high quality licorice cultivate technology system.
METHODThe randomized method was used to assign the provenance trial, the content of glycyrrhizin was determined by HPLC, and the method of classic genetics was applied to estimate the broad-sense heritability and genetic correlation coefficient.
RESULT AND CONCLUSIONThe content of glycyrrhizin is influenced by the growth environment and gene, but the growth environment is the dominant factor. The estimated result of single sites about broad-sense heritability (h2) showed that the production of G. uralensis (W(u)) and the content of glycyrrhizin was controlled by gene which the broad-sense heritability was 0.663 2, 0.751 1 respectively, they had some potential on genetic modification. The results of genetic analysis correlation showed that the plant height and the stem diameter was positive (P < 0.01) correlated significantly with the production (W(u)) either on phenotype or on genetic, it suggests that the plant height and the stem diameter could be the index above ground to assessment the production of the G. uralensis. The content of glycyrrhizin had a positive correlation with the number of lateral root (P < 0.05), but it had a negative correlation with the plant height, stem diameter, diameter of root top (D(r)), the total biomass (W(t)) and the biomass underground (W(u)) on inheritance. It is suggested that it was difficult to achieve both high content and high yield simultaneously in the genetic improvement, so we should have a deeply thought about the specific improvement target when making the reformed scheme.