Intercellular imaging by a polyarginine derived cell penetrating peptide labeled magnetic resonance contrast agent, diethylenetriamine pentaacetic acid gadolinium.
- Author:
You-Min GUO
1
;
Min LIU
;
Jun-Le YANG
;
Xiao-Juan GUO
;
Si-Cen WANG
;
Xiao-Yi DUAN
;
Peng WANG
Author Information
- Publication Type:Journal Article
- MeSH: Cell Line, Tumor; Cell Membrane Permeability; Contrast Media; Fluorescein-5-isothiocyanate; Gadolinium DTPA; Humans; Magnetic Resonance Imaging; methods; Peptides; metabolism
- From: Chinese Medical Journal 2007;120(1):50-55
- CountryChina
- Language:English
-
Abstract:
BACKGROUNDThe cellular plasma membrane represents a natural barrier to many exogenous molecules including magnetic resonance (MR) contrast agent. Cell penetrating peptide (CPP) is used to internalize proteins, peptides, and radionuclide. This study was undertaken to assess the value of a new intracellular MR contrast medium, CPP labeled diethylenetriamine pentaacetic acid gadolinium (Gd-DTPA) in molecular imaging in vitro.
METHODSFluorescein-5-isothiocyanate (FITC) and Gd-DTPA respectively labeled with CPP (FITC-CPP, Gd-DTPA-CPP) were synthesized by the solid-phase method. Human hepatic cancer cell line-HepG2 was respectively stained by FITC-CPP and FITC to observe the uptake and intracellular distribution. HepG2 was respectively incubated with 100 nmol/ml Gd-DTPA-CPP for 0, 10, 30, 60 minutes, and imaged by MR for studying the relationship between the incubation time and T(1)WI signal. The cytotoxicity to NIH3T3 fibroblasts cells was measured by 3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide reduction assay (MTT).
RESULTSThe molecular weights of CPP labeled imaging agents, which were determined by MALDI mass spectrometry (FITC-CPP MW = 2163.34, Gd-DTPA-CPP MW = 2285.99), were similar to the calculated molecular weights. Confocal microscopy suggested HepG2 translocated FITC-CPP in cytoplasm and nucleus independent with the incubation temperature. MR images showed HepG2 uptaken Gd-DTPA-CPP had a higher T(1) weighted imaging (T(1)WI) signal, and that the T(1)WI signal intensity was increasing in a time-dependent manner (r = 0.972, P = 0.001), while the signal intensity between the cells incubated by Gd-DTPA for 60 minutes and the controlled cells was not significantly different (P = 0.225). By MTT, all concentrations from 50 nmol/ml to 200 nmol/ml had no significant (F = 0.006, P = 1.000) effect on cell viability of mouse NIH3T3 fibroblasts, compared with the control group.
CONCLUSIONSThe newly constructed CPP based on polyarginine can translocate cells by carrying FITC and MR contrast agent Gd-DTPA, and the intracellular concentrations are readily detectable by MR imaging, suggesting a new way for MR molecular imaging.