Expression and role of early growth response gene-1 in experimental silicosis of rat.
- Author:
Ling CHU
1
;
Xiang LI
;
Yong-bin HU
;
Jin-sheng WANG
;
Hui ZHENG
;
Qing-fu ZENG
Author Information
- Publication Type:Journal Article
- MeSH: Animals; DNA-Binding Proteins; analysis; physiology; Disease Models, Animal; Early Growth Response Protein 1; Fibronectins; analysis; physiology; Immediate-Early Proteins; analysis; physiology; Immunohistochemistry; Lung; chemistry; physiopathology; Rats; Silicosis; etiology; metabolism; Transcription Factors; analysis; physiology; Transforming Growth Factor beta; analysis; physiology
- From: Chinese Journal of Industrial Hygiene and Occupational Diseases 2004;22(1):47-50
- CountryChina
- Language:Chinese
-
Abstract:
OBJECTIVETo study the expression and location of early growth response gene-1 (Egr-1), transforming growth factor-beta(1) (TGF-beta(1)), fibronectin (FN) in silicotic rat and to discuss the role of Egr-1 in the development of silicosis.
METHODSSilicotic animal model of rat was established, and the expressions of Egr-1, TGF-beta(1), FN in various lung cells of silicotic rat were analysed by using immunohistochemical technique (SP) and the image analysis.
RESULTSThe expressions of Egr-1 in bronchial epithelial cell, pulmonary macrophage, alveolar epithelium cell and interstitial cell in lung silicotic tissue (gray values: 118.58 +/- 5.65 - 168.52 +/- 5.67) were higher than those of controls (gray values: 166.23 +/- 5.23 - 188.12 +/- 8.35) during 1 - 28 days, and the expression was mainly in nucleus; the expressions of TGF-beta(1) in these cells (gray values: 123.49 +/- 5.65 - 170.24 +/- 3.56) were also higher than those of controls (166.53 +/- 6.25 - 198.56 +/- 4.53), and the expression was mainly in cytoplasm. The expressions of FN in bronchial epithelial cell, pulmonary macrophage and alveolar epithelial cell (gray values: 150.32 +/- 6.54 - 201.54 +/- 7.38) were lower, while those in interstitial cell (gray values: 121.43 +/- 5.65 - 167.55 +/- 6.35) were higher than those of controls. The changes of TGF-beta(1) and Egr-1 expression level in bronchial epithelial cell, pulmonary macrophage, alveolar epithelium cell and interstitial cell were synchronous during the experiment (1 - 28 days). Both of them were correlated with each other (r = 0.61, P < 0.01), while the expression of FN was not correlated with Egr-1, but correlated to TGF-beta(1) in interstitial cell (r = 0.46, P < 0.01).
CONCLUSIONSilicon dioxide could up-regulate the expression of nuclear transcription factor Egr-1 in several kinds of cell in lung. The activated Egr-1 may coordinate the expression of TGF-beta(1) and FN to regulate the development of silicosis.