Co-expressions of phosphoenolpyruvate synthetase A (ppsA) and transketolase A (tktA) genes of Escherichia coli.
- Author:
Yong-Hui LI
1
;
Yun LIU
;
Shi-Chun WANG
;
Zhao-Yang TONG
;
Qi-Shou XU
Author Information
1. Institute of Radiation Medicine, Academy of Military Medicine Science, Beijing 100850, China.
- Publication Type:Journal Article
- MeSH:
Electrophoresis, Polyacrylamide Gel;
Escherichia coli;
enzymology;
genetics;
metabolism;
Escherichia coli Proteins;
genetics;
metabolism;
Plasmids;
genetics;
Polymerase Chain Reaction;
Promoter Regions, Genetic;
genetics;
Pyruvate Synthase;
genetics;
metabolism;
Transketolase;
genetics;
metabolism
- From:
Chinese Journal of Biotechnology
2003;19(3):301-306
- CountryChina
- Language:Chinese
-
Abstract:
Metabolic engineering is the analysis of metabolic pathway and designing rational genetic modification to optimize cellular properties by using principle of molecular biology. Aromatic metabolites such as tryptophan, phenylalanine, and tyrosine are essential amino acids for human and animals. In addition, phenylalanine is used in aspartame production. Escherichia coli and many other microoganism synthesize aromatic amino acids through the condensation reaction between phospho-enolpyruvate (PEP) and erythrose-4-phosphate(E4P) to form 3-deoxy-D-arabinoheptulosonate 7-phosphate(DAHP). But many enzymes compete for intracellular PEP, especially the phosphotransferase system which is responsible for glucose transport in E. coli. This system uses PEP as a phosphate donor and converts it to pyruvate, which is less likely to recycle back to PEP. To channel more carbon flux into the aromatic pathway, one has to overcome pathways competing for PEP. ppsA and tktA are the key genes in central metabolism of aromatic amino acids biosynthesis. ppsA encoding phosphoenolpyrucate synthetase A (PpsA) which catalyzes pyruvate into PEP; tktA encoding transketolase A which plays a major role in erythrose-4-phosphate (E4P) production of pentose pathway. We amplified ppsA and tktA from E. coli K-12 by PCR and constructed recombinant plasmids of them in pBV220 vector containing P(R)P(L) promoter. Because of each gene carrying P(L) promoter, four productions of ligation were obtained. The monoclonal host containing recombinant plasmids was routinely grown in Luria-Bertani (LB) medium added Ampicillin at 37 degrees C overnight, and then inoculated in LB (Apr) medium by 3%-5% in flasks on a rotary shaker at 30 degres C, induced at 42 degrees C for 4.5 hours when OD600 = 0.4, cells were obtained by centrifugation at 10,000 r/min at 4 degrees C. The results of SDS-PAGE demonstrated that the bands at 84kD and 73kD were more intensive than the same ones of the controls. The specific activity of PpsA in crude extracts was increased by 10.8-fold, and TktA, by 3.9-fold. When both genes were co-expressed in E. coli, the activity of PpsA varied from 2.1-9.1 fold comparing to control, but the activity of TktA was relatively stable(3.9-4.5 fold). Whatever the two genes were expressed respectively or cooperatively, both could promote the production of DAHP, the first intermediate of the common aromatic pathway, but co-expression was more effective on forming DAHP. The results demonstrate that co-expression of ppsA and tktA can improve the production of DAHP to near theoretical yield. This report details a different strategy based on co-expression of two genes in one vector in vivo to release the burden and paves the way for construction of genetic engineering bacteria for further research.