Proliferative capacity of the isolated single CD(34)(+) glycosylphosphatidylinesitol-anchored (GPI) protein negative and positive hematopoietic cells in paroxysmal nocturnal hemoglobinuria.
- Author:
Bing HAN
1
;
Yongji WU
;
Zhaojiang LU
;
Zhinan ZHANG
Author Information
- Publication Type:Journal Article
- MeSH: Antigens, CD34; immunology; CD59 Antigens; immunology; Cell Culture Techniques; Cell Division; physiology; Colony-Forming Units Assay; Hematopoietic Stem Cells; immunology; pathology; Hemoglobinuria, Paroxysmal; physiopathology; Humans
- From: Chinese Journal of Hematology 2002;23(5):233-235
- CountryChina
- Language:Chinese
-
Abstract:
OBJECTIVESTo investigate the stroma-independent growth ability, multilineage differentiation and expansion of the single hematopoietic stem/progenitor cell from patients with paroxysmal nocturnal hematoglobinuria (PNH).
METHODThe CD(34)(+) CD(59)(+) and CD(34)(+) CD(59)(-) cells from PNH patients and CD(34)(+) CD(59)(+) cells from normal volunteers were sorted as each single cell into a well of 96 well culture plates containing culture medium supplemented with SCF, IL-3, Epo, GM-CSF, G-CSF, IL-6, Tpo and Flt-3 ligand.
RESULTS(1) Single PNH CD(34)(+) CD(59)(-) cell had a higher capacities for plating efficiency, colony (>/= 50 cells) formation and cell expansion than that of the PNH CD(34)(+) CD(59)(+) cells (P < 0.05); (2) Both the single CD(34)(+) CD(59)(-) cells from PNH patients and the single CD(34)(+) CD(59)(+) cells from normal controls had similar capacities for cell plating efficiency and colony and large colony formation. The PNH CD(34)(+) CD(59)(-) cells had a lower average cell production and cell expansion capacity. (3) The single CD(34)(+) CD(59)(+) cells from both PNH patients and normal controls showed the same capacities for cell plating efficiency and colony formation. The PNH CD(34)(+) CD(59)(+) cells exhibited much lower capacity for large colony formation, average cell production and total cell expansion. (4) A diminished secondary colony formation ability was also observed in the PNH CD(34)(+) CD(59)(+) and CD(34)(-) CD(59)(-) clones.
CONCLUSIONThe single PNH CD(34)(+) CD(59)(-) cells had growth advantage over the single PNH CD(34)(+) CD(59)(+) cells to some extent, but they both had impaired growth abilities as compared with CD(34)(+) cells from normal volunteers.