Effects of Yili dark bee propolis on oral cariogenic biofilm in vitro.
- Author:
Qian YU
;
Jing LIN
;
Zulkarjan-Ahmat
;
Jin ZHAO
- Publication Type:Journal Article
- MeSH: Actinomyces viscosus; Animals; Bees; Biofilms; Dental Plaque; Propolis; Streptococcus mutans; Streptococcus sanguis; Streptococcus sobrinus
- From: West China Journal of Stomatology 2015;33(4):343-346
- CountryChina
- Language:Chinese
-
Abstract:
OBJECTIVETo evaluate the effects of Yili dark bee propolis on the main cariogenic biofilm and mechanisms.
METHODSSusceptibilities to the ethanolic extract of propolis against Streptococcus mutans (S. mutans), Streptococcus sobrinus (S. sobrinus), Streptococcus sanguis (S. sanguis), Actinomyces viscosus (A. viscosus), and Actinomyces naeslundii (A. naeslundii) were analyzed by crystal violet stain method to determine the minimum biofilm eradication concentration (MBEC). The biofilm was initially cultivated for 24 h. Subsequently, the propolis groups with different concentration MBEC and initial pH 7.0 were cultured for 24 h. Moreover, the pH value was measured to evaluate the acid-producing ability of the tested plaque biofilm. The effects of propolis on the insoluble extracellular polysaccharide synthesis of S. mutans biofilm were evaluated by anthrone method.
RESULTSThe MBEC of Yili propolis on S. mutans, S. sobrinus, S. sanguis, A. viscosus, and A. naeslundii were 6.25, 1.56, 3.13, 0.78, and 0.78 mg.mL-1, respectively. Propolis could decrease the ΔpH of the tested plaque biofilm, and the differences between the control and propolis groups were statistically significant (P<0.05). At MBEC, propolis could reduce the ability of S. mutans in synthesizing insoluble extracellular polysaccharides.
CONCLUSIONYili propolis demonstrate remarkable eradicative effects on the cariogenic plaque biofilm, showing inhibition of the synthesis of biofilm-produced acids and insoluble extracellular polysaccharides.