Differences of acetylcholinesterase level in variety classes and strains of Culex pipiens pallens.
- Author:
Shi-Gen LI
1
Author Information
- Publication Type:Journal Article
- MeSH: Acetylcholinesterase; metabolism; Animals; Culex; classification; enzymology; Dichlorvos; pharmacology; Female; Insecticide Resistance; Propoxur; pharmacology; Pyrethrins; pharmacology; Species Specificity
- From: Journal of Zhejiang University. Medical sciences 2009;38(5):511-514
- CountryChina
- Language:Chinese
-
Abstract:
OBJECTIVETo investigate the diversity of acetylcholinesterase (AChE) activity in variety classes and strains of Culex pipiens pallens and provide a basis for the insecticide-resistance detection of mosquito by biochemical method.
METHODSAChE insensitivity of single mosquito was determined, using acetythiocholine iodide (ATch) as the substrate, 5,5'-dithio-bis (2-nitrobenzoic acid) (DTNB) as the developer, and propoxur as the inhibitor.
RESULTThere were significant differences in AChE activity among the four types of IV instar larvae and 3-day-old adult female of sensitive strain mosquito (P<0.01). The AChE activity of the 3-day-old adult female was higher than that of IV instar larvae of the four types of sensitive strain mosquito (P<0.01). The AChE activity of anti-DDVP (Rd) and anti-propoxur (Rp) strains of Culex pipiens pallens was significantly higher than that of sensitive (S) strain (P<0.01), while the AChE activity of anti-cypermethrin (Rc) strain of Culex pipiens pallens was similar to that of S strain (P>0.05). The individual frequency of insensitive AChE of Rd and Rp strains of Culex pipiens pallens was significantly higher than that of sensitive (S) strain (P<0.01), while the individual frequency of insensitive AChE of Rc strain of Culex pipiens pallens was similar to that of S strain(P>0.05).
CONCLUSIONThe AChE activity determination can be used to examine the insecticide-resistance of mosquito.