Carbachol exhibited positive inotropic effect on rat ventricular myocytes via M₂ muscarinic receptors.
- Author:
Xiang-Li CUI
1
;
Huan-Zhen CHEN
;
Bo-Wei WU
Author Information
1. Department of Physiology, Shanxi Medical University, Taiyuan 030001, China.
- Publication Type:Journal Article
- MeSH:
Animals;
Calcium;
Carbachol;
pharmacology;
Heart Ventricles;
Male;
Myocardial Contraction;
Myocytes, Cardiac;
drug effects;
Rats;
Receptor, Muscarinic M2;
Receptors, Muscarinic;
drug effects;
Sodium;
Sodium-Calcium Exchanger;
Thiourea;
analogs & derivatives
- From:
Acta Physiologica Sinica
2007;59(5):667-673
- CountryChina
- Language:English
-
Abstract:
The present study was aimed to investigate the positive inotropic mechanism of carbachol (CCh) on rat ventricular myocytes. The effects of CCh on L-type calcium current (I(Ca,L)) and Na(+)/Ca(2+) exchange current (I(Na/Ca)) were investigated in isolated rat ventricular myocytes. After loading myocytes with Fura-2/AM, electrically triggered Ca(2+) transient and cell shortening in single myocyte were measured simultaneously using ion imaging system with charge-coupled device (CCD) camera. CCh (100 mumol/L) increased I(Na/Ca) in forward mode from (1.18 +/- 0.57) pA/pF in the control group to (1.65 +/- 0.52) pA/pF (P<0.01) and that in reverse mode from (1.11 +/- 0.49) pA/pF in the control group to (1.53 +/- 0.52) pA/pF (P<0.01), respectively. CCh had no effect on I(Ca,L). The stimulatory effect of CCh on I(Na/Ca) was blocked by application of atropine, a non-selective M muscarinic receptor antagonist, and methoctramine, a selective M(2) muscarinic receptor antagonist. CCh (100 mumol/L) increased cell shortening from (3.00 +/- 0.67) mum in the control group to (3.55 +/- 1.21) mum. Ca(2+) transient was also increased from 203.8 +/- 50.0 in the control group to 234.8 +/- 64.3 in 100 mumol/L CCh group. KB-R7943, a selective inhibitor of reverse mode Na(+)/Ca(2+) exchange, did not change the baseline level of cell shortening and Ca(2+) transient, while completely abolished CCh-induced increments of both Ca(2+) transient and cell shortening. CCh increased cell shortening and Ca(2+) transient in the presence of nicardipine, indicating that the positive inotropic effect of CCh was through activation of Na(+)/Ca(2+) exchange. Calcium sensitivity was not changed by CCh. Both atropine and methoctramine abolished the positive inotropic effects of CCh, demonstrating that CCh induced positive inotropism via the M(2) muscarinic receptor. The results suggest that CCh increases cell contraction and Ca(2+) transient in rat ventricular myocytes. This positive inotropic effect of CCh is through activation of reverse mode Na(+)/Ca(2+) exchange, and M(2) receptors are involved in mediating CCh-induced contraction.