Effect of Basic Fibroblast Growth Factor and Transforming Growth Factor-Β1 Combined with Bone Marrow Mesenchymal Stem Cells on the Repair of Degenerated Intervertebral Discs in Rat Models.
- Author:
Chao JIANG
1
;
Da-peng LI
2
;
Zhi-jian ZHANG
;
Hao-ming SHU
1
;
Lang HU
2
;
Zheng-nan LI
1
;
Yong-hui HUANG
2
Author Information
- Publication Type:Journal Article
- MeSH: Animals; Bone Marrow Cells; Bone Marrow Transplantation; Cell Differentiation; Collagen; Disease Models, Animal; Fibroblast Growth Factor 2; Hematopoietic Stem Cells; Intervertebral Disc; Intervertebral Disc Degeneration; Rats; Rats, Sprague-Dawley; Transforming Growth Factor beta1; Wound Healing
- From: Acta Academiae Medicinae Sinicae 2015;37(4):456-465
- CountryChina
- Language:Chinese
-
Abstract:
OBJECTIVETo evaluate the effects of the combination of basic fibroblast growth factor (bFGF), transforming growth factor-Β1 (TGF-Β1), bone marrow mesenchymal stem cells (BMSCs), and temperature-responsive chitosan hydrogel (TCH) gel on the repair of degenerative intervertebral disc in rat models.
METHODSRat models of intervertebral disc degeneration were established by acupuncture. The degenerative effects were observed under magnetic resonance imaging (MRI). The BMSCs was cultured in vitro and then transfected by adenovirus with enhanced green fluorescent protein to make it carry the gene of enhanced green fluorescent protein,which functioned as fluorescence labeling. The SD rat models of intervertebral disc degeneration were divided into four groups: group A, treated with the combination of bFGF, TGF-Β1,BMSCs,and TCH gel; group B, treated with the combination of BMSCs and TCH gel;group C, treated with the combination of bFGF,TGF-Β1, and TCH gel;and group D, treated with PBS buffer solution. After the corresponding reagents were injected into the degenerative intervertebral discs of each group, the rats were cultivated for another four weeks and then the repair effects of the intervertebral discs were observed under MRI. Furthermore,the intervertebral discs of each group were taken out and observed by HE and Masson staining. The nucleus pulposus was aspirated and the expressions of aggrecan,collagen 2,Sox-9,and collagen I of nucleus pulposus of each group were tested by reverse transcription polymerase chain reaction and Western blot.
RESULTSThe transplanted BMSCs survived in the intervertebral disc and differentiated into nucleus pulposus-like cells. MRI showed that:the signal intensity of the nucleus pulposus of group A was much higher than that of the rest groups, the signal intensity of group B was higher than that of group C, and the signal intensity of group D was the lowest,in which the dura mater spinalis was in compression and the spinal cord changed in beaded shape. The differences of the Pfirrmann grading among the four groups had statistical significance (P<0.05). The results of the HE and Masson stains showed:the intervertebral disc of group A was well-structured,the quantity of nucleus pulposus cells was larger than that of the other three groups,and the boundary between the nucleus pulposus and the annulus fibrosus was clearly defined;the quantity of the nucleus pulposus cells of group B was larger than that of group C, and the broken annulus fibrosus was not observed in group B, while the broken annulus fibrosus could be observed in group C; and, the nucleus pulposus cells of group D were replaced by fibrous tissue. The results of the reverse transcription polymerase chain reaction and Western blot tests showed that,in terms of the expressions of aggrecan,collagen 2 and Sox-9,group A was the highest, followed by group B,group C,and group D (P<0.05); in terms of the expression of collagen 1,there was no obvious difference among these four groups (P>0.05).
CONCLUSIONSThe transplanted BMSCs can survive in the degenerative intervertebral disc and differentiate into nucleus pulposus-like cells. The combination of bFGF, TGF-Β1, BMSCs,and TCH gel has obvious repair effect on the degenerative intervertebral discs. The effect of the combination of BMSCs and TCH gel on transplantation therapy of the degenerative intervertebral discs is better than that of the combination of bFGF, TGF-Β1 and TCH gel but worse than that of the combination of bFGF, TGF-Β1, BMSCs, and TCH gel.