Iron chelator daphnetin against Pneumocystis carinii in vitro.
- Author:
Bin YE
1
;
Yu-Qiang ZHENG
;
Wei-Hua WU
;
Jing ZHANG
Author Information
- Publication Type:Journal Article
- MeSH: Iron; physiology; Iron Chelating Agents; pharmacology; Microscopy, Electron; Pneumocystis carinii; drug effects; growth & development; ultrastructure; Umbelliferones; pharmacology
- From: Chinese Medical Journal 2004;117(11):1704-1708
- CountryChina
- Language:English
-
Abstract:
BACKGROUNDAlthough there are several drugs and drug combinations for the treatment of Pneumocystis carinii (P. carinii) pneumonia, all drugs have the toxicity as well as low efficacy. Iron chelators have been proposed as a source of new drugs for combating these infections. We hypothesized that iron chelators would suppress the growth of P. carinii by deprivation of the nutritional iron required for growth. In this study, a short-term axenic culture system of P. carinii was established. Daphnetin (7,8-dihydroxycoumarin), a known iron chelator, was demonstrated to exhibit in vitro activity against P. carinii in this system.
METHODSP. carinii organisms were obtained from the lungs of immunosuppressed rats. The culture system consisted of Iscove Dulbecco Eagle's Minimum Essential Medium (IMDM), supplemented with S-adenosyl-L-methionine, N-acetylglucosamine, putrescine, L-cysteine, L-glutamine, 2-mercaptoethanol, and fetal bovine serum, and was maintained at 37 degrees C, in 5% CO(2), 95% O(2), at the optimal pH of 8.0. The culture system was used to assess the effect of daphnetin on the proliferation of P. carinii organisms. The ultrastructures of the treated organisms were observed by transmission electron microscopy.
RESULTSThe number of cysts and trophozoites increased 8- to 9-fold and 11- to 12-fold, respectively, after 10 days of culture. Daphnetin was found to suppress the growth of P. carinii in a dose-dependent manner at concentrations between 1 micromol/L and 20 micromol/L. The inhibitory activity was suppressed by the chelation of daphnetin with ferrous sulfate in a 2:1 molar ratio, but it was not suppressed by mixing the culture medium with magnesium sulfate. Reduction of P. carinii numbers after treatment with daphnetin correlated with morphological changes in the organisms, as determined by transmission electron microscopy.
CONCLUSIONSDaphnetin can suppress the growth of P. carinii in vitro. The efficacy of daphnetin in suppressing the the growth of P. carinii in vitro is related to its ability to chelate iron.