Propofol can Protect Against the Impairment of Learning-memory Induced by Electroconvulsive Shock via Tau Protein Hyperphosphorylation in Depressed Rats.
- Author:
Wan-fu LIU
;
Chao LIU
- Publication Type:Journal Article
- MeSH: Animals; Depression; psychology; Dizocilpine Maleate; pharmacology; Electroshock; Glutamic Acid; analysis; Learning Disorders; prevention & control; Male; Memory Disorders; prevention & control; Phosphorylation; Propofol; pharmacology; Rats; Rats, Sprague-Dawley; tau Proteins; metabolism
- From: Chinese Medical Sciences Journal 2015;30(2):100-107
- CountryChina
- Language:English
-
Abstract:
OBJECTIVETo explore the possible neurophysiologic mechanisms of propofol and N-methyl-D- aspartate (NMDA) receptor antagonist against learning-memory impairment of depressed rats without olfactory bulbs.
METHODSModels of depressed rats without olfactory bulbs were established. For the factorial design in analysis of variance, two intervention factors were included: electroconvulsive shock groups (with and without a course of electroconvulsive shock) and drug intervention groups [intraperotoneal (ip) injection of saline, NMDA receptor antagonist MK-801 and propofol. A total of 60 adult depressed rats without olfactory bulbs were randomly divided into 6 experimental groups (n=10 per group): ip injection of 5 ml saline; ip injection of 5 ml of 10 mg/kg MK-801; ip injection of 5 ml of 10 mg/kg MK-801 and a course of electroconvulsive shock; ip injection of 5 ml of 200 mg/kg propofol; ip injection of 5 ml of 200 mg/kg propofol and a course of electroconvulsive shock; and ip injection of 5 ml saline and a course of electroconvulsive shock. The learning-memory abilities of the rats was evaluated by the Morris water maze test. The content of glutamic acid in the hippocampus was detected by high-performance liquid chromatography. The expressions of p-AT8Ser202 in the hippocampus were determined by Western blot analysis.
RESULTSPropofol, MK-801 or electroconvulsive shock alone induced learning-memory impairment in depressed rats, as proven by extended evasive latency time and shortened space probe time. Glutamic acid content in the hippocampus of depressed rats was significantly up-regulated by electroconvulsive shock and down-regulated by propofol, but MK-801 had no significant effect on glutamic acid content. Levels of phosphorylated Tau protein p-AT8Ser202 in the hippocampus was up-regulated by electroconvulsive shock but was reduced by propofol and MK-801 alone. Propofol prevented learning-memory impairment and reduced glutamic acid content and p-AT8Ser202 levels induced by electroconvulsive shock.
CONCLUSIONElectroconvulsive shock might reduce learning-memory impairment caused by protein Tau hyperphosphorylation in depressed rats by down-regulating glutamate content.