Proficiency of virtual reality simulator training in flexible retrograde ureteroscopy renal stone management.
- Author:
Jian-liang CAI
1
;
Yi ZHANG
;
Guo-feng SUN
;
Ning-chen LI
;
Xue-li YUAN
;
Yan-qun NA
Author Information
- Publication Type:Journal Article
- MeSH: Adult; Computer Simulation; Humans; Kidney Calculi; Male; Ureteroscopy; education; Urology; education
- From: Chinese Medical Journal 2013;126(20):3940-3943
- CountryChina
- Language:English
-
Abstract:
BACKGROUNDMinimally invasive flexible ureteroscopy techniques have widely adopted in the management of patients with renal stones. We performed this study to investigate the value of virtual reality simulator training in retrograde flexible ureteroscopy renal stone treatment for catechumen.
METHODSThirty catechumen, included 17 attending physicians and 13 associate chief physicians, were selected for study. The trainees first underwent 1-hour basic training to get familiar with the instrument and basic procedures, then followed by 4-hour practice on virtual reality simulators. Before and after the 4-hour training, all trainees undertake an assessment with task 7 program (right low pole calyces stone management). We documented for each trainee the total time of procedure, time of progressing from the orifice to stone, stone translocation and fragmentation time, laser operate proficiency scale, total laser energy, maximal size of residual stone fragments, number of trauma from the scopes and tools, damage to the scope and global rating scale (GRS). The proficiency of this training program was analyzed by the comparison of the first and second assessment outcomes.
RESULTSSignificant improvement was observed in retrograde flexible ureteroscopy management of renal stone on virtual reality simulators after finishing the 4 hour special-purpose training. This was demonstrated by improvement in total procedure time ((18.37±2.59) minutes vs. (38.67±1.94) minutes), progressing time from the orifice to stone ((4.00±1.08) minutes vs. (13.80±2.01) minutes), time of stone translocation ((1.80±0.71) minutes vs. (6.57±1.01) minutes), fragmentation time ((4.43±1.25) minutes vs. (13.53±1.46) minutes), laser operate proficiency scale (8.47±0.73 vs. 3.77±0.77), total laser energy ((3231.6±401.4) W vs. (5329.8±448.9) W), maximal size of residual stone fragments ((2.66±0.39) mm vs. (5.77±0.63) mm), number of trauma from the scopes and tools (3.27±1.01 vs. 10.37±3.02), damage to the scope (0 vs. 0.97±0.76) and GRS (29.27±2.95 vs. 9.87±2.21). The differences between the first and the second assessment were all statistically significant (all P < 0.01).
CONCLUSIONThe virtual reality simulator training program can help the trainees to rapidly improve their retrograde flexible ureteroscopy skill in renal stone treatment.