Inhibition of Glial Activation in Rostral Ventromedial Medulla Attenuates Mechanical Allodynia in a Rat Model of Cancer-induced Bone Pain
10.1007/s11596-012-0051-5
- Author:
LIU XIJIANG
1
;
BU HUILIAN
;
LIU CHENG
;
GAO FENG
;
YANG HUI
;
TIAN XUEBI
;
XU AIJUN
;
CHEN ZHIJUN
;
Cao FEI
;
TIAN YUKE
Author Information
1. Department of Anesthesiology,Tongji Hospital,Tongji Medical College,Huazhong University of Science and Technology,Wuhan 430030,China
- Keywords:
cancer-induced bone pain;
microglia;
astrocyte;
p38 MAPK;
rostral ventromedial medulla
- From:
Journal of Huazhong University of Science and Technology (Medical Sciences)
2012;32(2):291-298
- CountryChina
- Language:Chinese
-
Abstract:
Descending nociceptive modulation from the supraspinal structures plays an important role in cancer-induced bone pain (CIBP).Rostral ventromedial medulla (RVM) is a critical component of descending nociceptive facilitation circuitry,but so far the mechanisms are poorly known.In this study,we investigated the role of RVM glial activation in the descending nociceptive facilitation circuitry in a CIBP rat model.CIBP rats showed significant activation of microglia and astrocytes,and also up-regulation of phosphorylated p38 mitogen-activated protein kinase (p38 MAPK) and pro-inflammatory mediators released by glial cells (IL-1β,IL-6,TNF-a and brain-derived neurotrophic factor) in the RVM.Stereotaxic microinjection of the glial inhibitors (minocycline and fluorocitrate) into CIBP rats' RVM could reverse the glial activation and significantly attenuate mechanical allodynia in a time-dependent manner.RVM microinjection of p38 MAPK inhibitor (SB203580) abolished the activation of microglia,reversed the associated up-regulation of pro-inflammatory mediators and significantly attenuated mechanical allodynia.Taken together,these results suggest that RVM glial activation is involved in the pathogenesis of CIBP.RVM microglial p38 MAPK signaling pathway is activated and leads to the release of downstream pro-inflammatory mediators,which contribute to the descending facilitation of CIBP.