Effects of Na(2)SeO(3) on expression of VEGF in K562/ADR cells.
- Author:
Jing CUI
1
;
Yi-Ping WU
;
Jing DING
;
Fu-Qiang LIU
Author Information
1. Department of Hematology, Beijing Tongren Hospital, Capital University of Medicine, Beijing 100730, China.
- Publication Type:Journal Article
- MeSH:
Doxorubicin;
pharmacology;
Drug Resistance, Neoplasm;
Humans;
K562 Cells;
Sodium Selenite;
pharmacology;
Vascular Endothelial Growth Factor A;
metabolism
- From:
Journal of Experimental Hematology
2007;15(3):474-477
- CountryChina
- Language:Chinese
-
Abstract:
In order to investigate the effects of Na(2)SeO(3) on expression of VEGF in K562/ADR cells, K562 and K562/ADR cells were treated with Na(2)SeO(3) at dose of 5 and 10 micromol/L. The expressions of VEGF in K562 and K562/ADR cells were detected by ELISA before and at the different time point after treatment. The mutiplie of reversion of resistance was detected by MTT method. The results showed that Na(2)SeO(3) at dose of 10 micromol/L could increase the sensitivity of K562/ADR cell to adriamycin, the multiple of reversion was 3.48. The expression levels of VEGF in K562 and K562/ADR cells increased with prolongation of time cultured, and the VEGF expression levels in K562/ADR cells at the different time points were higher than that in K562 cells (P < 0.05); 5 and 10 micromol/L Na(2)SeO(3) did not suppress expression of VEGF in K562 cells at 72 hours (P > 0.05), and the VEGF level in K562 cells at 96 hours decreased without statistical significance; 5 and 10 micromol/L Na(2)SeO(3) acting for 48 hours did not show suppressive effect on expression of VEGF in K562/ADR cells (P > 0.05), 5 micromol/L Na(2)SeO(3) could decrease the expression of VEGF in K562/ADR cell after treatment for 96 hours, while 10 micromol/L Na(2)SeO(3) could significantly decrease the expression of VEGF in K562/ADR cells treated for 72 hours and 96 hours (P < 0.01). It is concluded that VEGF would be involved in the multidrug resistance of leukemia. Na(2)SeO(3) decreasing expression of VEGF in leukemic cells may be one of the mechanisms reversing multidrug resistance.