Effects of Aminotriazole on Lung Toxicity of Paraquat Intoxicated Mice.
10.4046/trd.1994.41.3.222
- Author:
Seung Il LEE
;
Gi Wan AN
;
Choon Hae CHUNG
- Publication Type:Original Article
- Keywords:
Paraquat;
Aminotriazole;
Lung toxicity
- MeSH:
Amitrole*;
Animals;
Catalase;
Free Radicals;
Glucose;
Glutathione;
Glutathione Peroxidase;
Humans;
Hydrogen Peroxide;
Lung*;
Mice*;
Mortality;
Multiple Organ Failure;
Oxygen;
Paraquat*;
Pulmonary Fibrosis;
Superoxides
- From:Tuberculosis and Respiratory Diseases
1994;41(3):222-230
- CountryRepublic of Korea
- Language:Korean
-
Abstract:
BACKGROUND: Paraquat, a widely used herbicide, is extremely toxic, causing multiple organ failure in humans. Paraquat especially leads to irreversible progressive pulmonary fibrosis, which is related to oxygen free radicals. However, its biochemical mechanism is not clear. Natural mechanisms that prevent damage from oxygen free radicals include changes in glutathione level, G6PDH, superoxide dismutase(SOD), catalase, and glutathione peroxidase. The authors think catalase is closely related to paraquat toxicity in the lungs METHOD: The effects of 3-amino-1,2,4-triazole(aminotriazole), a catalase inhibitor, on mice administered with paraquat were investigated. We studied the effects of aminotriazole on the survival of mice administered with paraquat, by comparing life spans between the group to which paraquat had been administered and the group to which a combination of paraquat and aminotriazole had been administered. We measured glutathion level, glucose 6-phosphate dehydrogenase(G6PDH), superoxide dismutase(SOD), catalase, and glutathione peroxidase(GPx) in the lung tissue of 4 groups of mice: the control grouts, group A(aminouiazole injected), group B(paraquat administered), group C(Paraquat and aminotriazole administered). RESULTS: The mortality of mice administered with paraquat which were treated with aminotriazole was significantly increased compared with those of mice not treated with aminotriazole. Glutathione level in group B was decreased by 20%, a significant decrease compared with the control group. However, this level was not changed by the administration of aminotriazole(group C). The activity of G6PDH in all groups was not significantly changed compared with the control group. The activities of SOD, catalase, and glutathione peroxidase(GPx) in the lung tissue were significantly decreased by paraquat administration(group B); catalase showed the largest decrease. Catalase and GPX were significantly decreased by aminotriazole treatment in mice administered with paraquat but change in SOD activity was not significant.(group C). CONCLUSION: Decrease in catalase activity by paraquat suggests that paraquat toxicity in the lungs is closely related to catalase activity. Paraquat toxicity in mice is enhanced by aminotriazole administration, and its result is related to the decrease of catalase activity rather than glutathione level in the lungs. Production of hydroxyl radicals, the most reactive oxygen metabolite, is accelerated due to increased hydrogen peroxide by catalase inhibition and the lung damage probably results from nonspecific tissue injury of hydroxyl radicals.