Guangxi cobra venom-derived NGF promotes the osteogenic and therapeutic effects of porous BCP ceramic.
- Author:
Pan JIN
1
;
Fuqiang YIN
;
Li HUANG
;
Li ZHENG
;
Jinmin ZHAO
;
Xingdong ZHANG
Author Information
- Publication Type:Original Article
- MeSH: Acceleration; Adsorption; Asian Continental Ancestry Group; Calcium Phosphates; Cell Proliferation; Ceramics*; Chromatography; Cobra Venoms; Elapidae*; Humans; In Vitro Techniques; Metabolism; Methods; Nerve Growth Factor*; Neuropeptides; Osteoblasts; Osteogenesis; Regeneration; Therapeutic Uses*
- From:Experimental & Molecular Medicine 2017;49(4):e312-
- CountryRepublic of Korea
- Language:English
- Abstract: Neuro-osteological interactions have an important role in the regulation of bone metabolism and regeneration. Neuropeptides combined with porous biphasic calcium phosphates (BCP) using protein adsorption may contribute to the acceleration of bone formation. In the present study, we investigated the effect of BCP combined with nerve growth factor (NGF) on the growth of osteoblasts in vitro and the combinational therapeutic effect on the repair of calvarial defects in vivo. NGF was separated and purified from Chinese cobra venom using a simplified three-step chromatography method. BCP combined with NGF exerted a potent effect on osteoblast differentiation, as evidenced by enhanced cell proliferation, increased ALP activity and the up-regulated expression of osteogenesis-related genes and proteins. Further, combinational therapy with BCP and NGF improved calvarial regeneration, which was superior to treatment with therapy alone, as observed using imageological and morphological examination and histological and immunohistochemical staining. The results confirmed the effect of neuro-osteological interactions through combinatorial treatment with NGF and BCP to promote osteogenesis and bone formation, which may provide an effective and economical strategy for clinical application.