Effects of Homogentisic Acid and Natural Products Derived from Pinellia ternata on Secretion, Production and Gene Expression of MUC5AC Mucin from Cultured Airway Epithelial Cells.
10.20307/nps.2017.23.1.29
- Author:
Hyun Jae LEE
1
;
Choong Jae LEE
Author Information
1. Department of Health Management and Smith Liberal Arts College, Sahmyook University, Seoul, Korea.
- Publication Type:Original Article
- Keywords:
Airway;
MUC5AC;
Mucin;
Homogentisic acid
- MeSH:
Adenine;
Adenosine;
Biological Products*;
Enzyme-Linked Immunosorbent Assay;
Epithelial Cells*;
Gene Expression*;
Homogentisic Acid*;
Mucins*;
Pinellia*;
Uridine
- From:Natural Product Sciences
2017;23(1):29-34
- CountryRepublic of Korea
- Language:English
-
Abstract:
In this study, we investigated whether adenosine, adenine, uridine and homogentisic acid derived from Pinellia ternata affect the secretion, production and gene expression of MUC5AC mucin from airway epithelial cells. Confluent NCI-H292 cells were pretreated with adenosine, adenine, uridine or homogentisic acid for 30 min and then stimulated with PMA (phorbol 12-myristate 13-acetate) for 24 h. The MUC5AC mucin gene expression, mucin protein production and secretion were measured by RT-PCR and ELISA, respectively. The results were as follows: (1) Adenine and homogentisic acid decreased PMA-induced MUC5AC mucin gene expression, although adenosine and uridine did not affect the mucin gene expression; (2) Adenosine, adenine, uridine and homogentisic acid inhibited PMA-induced MUC5AC mucin production; (3) Homogentisic acid inhibited the secretion of MUC5AC mucin from NCI-H292 cells. These results suggest that, among the four compounds examined, homogentisic acid showed the regulatory effect on the steps of gene expression, production and secretion of mucin, by directly acting on airway epithelial cells.